langgraph-mcp-agents:一个支持动态工具集成的AI智能体系统

随着大语言模型(LLM)在任务自动化与决策辅助中的应用日益广泛,构建一个具备可扩展性、灵活性和可视化交互能力的智能体系统变得尤为重要。

今天要介绍的是一个基于 LangGraph 构建的开源项目 —— langgraph-mcp-agents,它不仅集成了 MCP(Model Control Protocol),还提供了友好的 Streamlit 界面,让开发者和用户都能轻松地与 AI 智能体进行交互,并动态管理各种外部数据源和 API 工具。


🎯 项目定位:打造一个模块化、可配置的智能体开发平台

langgraph-mcp-agents 是一个面向 AI 开发者的智能体框架,旨在通过 LangGraph 的状态图机制与 MCP 的插件式工具体系,实现灵活、可扩展的多代理协作系统。

该项目的核心目标是:

  • 提供一个开箱即用的 AI 智能体运行环境
大模型技术栈学习资料共享池 1.智能体行动 1.1大模型开发技术栈 1.1.1langchain 开源框架支持构建链式任务流程,实现模型调用与工具集成。 官方文档:[LangChain Documentation](https://docs.langchain.com/) 实战教程:[智能体开发指南](https://python.langchain.com/v0.1/docs/modules/agents/) 1.1.2langgraph智能体状态管理工作流引擎,优化复杂决策场景。 官方教程:[状态工作流实现](https://python.langchain.com/v0.1/docs/langgraph/) 2.智能体记忆 2.1检索增强 2.1.1向量RAG 结合语义检索与大模型生成能力 论文精讲:[RAG技术原理解析](https://arxiv.org/abs/2005.11401) 2.1.2GraphRAG 基于知识图谱的增强检索 微软开源方案:[GraphRAG实现](https://github.com/microsoft/graphrag) 2.2知识库 2.2.1向量知识库--Milvus 亿级向量毫秒检索,性能超传方案2-5倍 部署指南:[Docker安装](https://milvus.io/docs/install_standalone-docker.md) 索引优化:IVF_PQ算法实现O(log n)复杂度 2.2.2图知识库--Neo4j 关系型知识存储与推理 实战课程:[Cypher查询精要](https://neo4j.com/graphacademy/) 3.智能工具 3.1工具交互协议 3.1.1MCP协议 智能工具调用标准规范 协议要素: 工具元数据描述规范 异步回调机制 输入/输出类型约束 参考实现:[Toolformer论文](https://arxiv.org/abs/2302.04761) 4.智能体交互 4.1前端交互 4.1.1fastapi 高性能API服务栈 生产部署方案:[ASGI服务器配置指南](https://fastapi.tiangolo.com/deployment/) 4.1.2uvicorn 4.1.3gunicorn 4.2智能体间交互协议 4.2.1A2A协议 分布式智能体通信标准 核心特性: 基于JWT的身份认证 消息路由R=f(agentID,topic) 服务发现机制 5.智能体其他辅助技术栈 5.1包依赖管理工具 5.1.1UV包 Rust编写的高速依赖管理器 性能对比:[UV vs pip](https://github.com/astral-sh/uv) 5.2数据库方面相关 5.2.1SQLAlchemy 关系型数据库ORM框架 联机文档:[1.4版本手册](https://docs.sqlalchemy.org/en/14/) 5.3图数据库方面 5.3.1NetworkX 实战案例:[知识图谱分析](https://networkx.org/documentation/stable/tutorial.html)根据这个编写这个表格类型,链接,概述。例如github地址,https://github.com/langchain-ai/langchain,langchain-github地址
07-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值