阿里通义千问重磅发布 Qwen3-235B-A22B-Instruct-2507-FP8:256K 长文本旗舰模型,全面超越主流闭源模型

阿里云通义实验室今日正式发布其最新一代超大规模语言模型 Qwen3-235B-A22B-Instruct-2507-FP8,作为 Qwen3 系列的深度优化版本,该模型在指令遵循、复杂推理、多语言理解、长文本处理及工具调用等核心能力上实现全面跃升,综合性能超越 Kimi-K2、DeepSeek-V3 以及 Claude-Opus-2024(Claude-Opus4)等当前主流闭源大模型,再次树立开源模型的新标杆。

该模型现已在 Hugging Face 与 ModelScope 平台同步开源,支持商用与研究使用。


模型概览

Qwen3-235B-A22B-Instruct-2507-FP8 是 Qwen3 系列中面向复杂任务与专业场景的旗舰级指令微调模型,拥有 2350 亿参数(235B),采用 FP8 量化格式 发布,在保证极致推理效率的同时,保留了接近全精度模型的生成质量。

模型代号中的 “2507” 表示其训练与优化完成于 2025 年 7 月,代表了通义千问团队在模型架构、训练数据与对齐策略上的最新研究成果。


核心升级与性能亮点

🔝 256K 超长上下文支持,行业领先

本次发布最大的亮点之一是将最大上下文长度提升至 256,000 tokens,可轻松处理整本小说、大型代码库、长篇科研论文或复杂法律合同。结合优化的注意力机制,模型在长文本中的信息提取、跨段落

### 部署阿里Qwen2.5-VL-3B-Instruct 的指南 部署阿里Qwen2.5-VL-3B-Instruct 模型可以通过多种方式实现,包括本地部署、Docker 容器化部署以及使用云服务 API。以下是关于这些方法的具体说明: #### 1. **本地部署** 在本地环境中部署 Qwen2.5-VL-3B-Instruct 模型需要准备以下内容: - 确保安装了必要的依赖库,例如 PyTorch 或 TensorFlow。 - 下载模型权重文件 `Qwen2.5-VL-3B-Instruct` 并将其存储在本地目录中[^1]。 - 使用 Python 脚本加载模型并进行推理。以下是一个简单的代码示例: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # 加载 tokenizer 和模型 tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct") model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct") # 输入文本 input_text = "请生成一段关于人工智能的描述:" inputs = tokenizer(input_text, return_tensors="pt") # 模型推理 outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` #### 2. **Docker 容器化部署** 如果希望通过 Docker 进行容器化部署,可以参考以下步骤: - 拉取官方提供的 Docker 镜像或自行构建镜像[^2]。 - 使用以下命令运行容器: ```bash docker pull registry.openanolis.cn/openanolis/pytorch-amd:1.13.1-23-zendnn4.1 docker run -d -it --net host -v $HOME:/root qwen-vl-chat-container ``` - 在容器内部加载模型权重并启动服务。 #### 3. **云服务调用** 对于不想进行本地安装的用户,可以直接通过阿里云百炼平台的 API 调用 Qwen2.5-VL-3B-Instruct 模型[^2]。具体步骤如下: - 注册阿里云账号并开通百炼平台服务。 - 获取 API 密钥并根据文档发送请求。 - 请求示例(使用 curl 命令): ```bash curl -X POST https://api.bailian.aliyun.com/invoke \ -H "Authorization: Bearer YOUR_ACCESS_TOKEN" \ -d '{ "model": "Qwen2.5-VL-3B-Instruct", "prompt": "请生成一段关于人工智能的描述:", "max_tokens": 100 }' ``` #### 4. **离线环境部署** 在离线环境中部署 Qwen2.5-VL-3B-Instruct 模型时,可以参考以下步骤[^3]: -模型权重文件上传到服务器,并确保路径正确。 - 修改配置文件以适配离线环境。 - 示例代码片段: ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM # 加载本地模型 model_path = "/path/to/Qwen2.5-VL-3B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) # 推理过程 input_text = "请生成一段关于人工智能的描述:" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### 注意事项 - 确保硬件资源充足,尤其是 GPU 内存[^4]。 - 如果使用 Docker 部署,请注意挂载正确的数据卷。 - 对于云服务调用,需关注费用和 Token 使用情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花生糖@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值