考研数据结构(十二):图的存储结构和图的遍历(C语言)

本文介绍了图的两种存储结构:邻接矩阵和邻接表,并提供了非带权图和带权图的邻接矩阵实现。同时,详细阐述了图的深度优先遍历(DFS)和广度优先遍历(BFS)算法,包括相应的访问标记数组和遍历过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、图的邻接矩阵存储结构

邻接矩阵存储非带权图

#define MaxVertexNum 100

typedef char vertexType;  // 顶点的数据类型
typedef int edgeType;     // 带权图边上权值的数据类型
typedef struct {
	vertexType vex[MaxVertexNum];  				// 顶点 
	edgeType edge[MaxVertexNum][MaxVertexNum];	// 边的权 
	int vernum,arcnum;							// 图的顶点数和边数 
}MGraph; 

邻接矩阵存储带权图

#define MaxVertexNum 100
#defint INFINITY // 最大的int 值

typedef char vertexType;  // 顶点的数据类型
typedef int edgeType;     // 带权图边上权值的数据类型
typedef struct {
	vertexType vex[MaxVertexNum];  				// 顶点 
	edgeType edge[MaxVertexNum][MaxVertexNum];	// 边的权 
	int vernum,arcnum;							// 图的顶点数和边数 
}MGraph; 

2、图的邻接表存储结构

// 邻接表存储

typedef ArcNode{
	int adjver; // 边/弧指向哪个节点
	struct ArcNode *next; // 指向下一条弧的指针 
	// InfoType info; // 边权值 
}ArcNode;

typedef struct VNode{
	VertexType data; // 顶点信息
	ArcNode *first;  // 第一条边 / 弧 
}VNode,AdjList[MAX_VERTEX_NUM];

typedef struct {
	AdjList vertices;
	int vernum,arcnum;
}ALGraph;

3、图的深度优先遍历

/*
FirstNeighbor(G,x) : 求图G中顶点 x 的第一个邻接点,若有则返回顶点号
,若没有则返回 -1
NextNeighbor(G,x,y): 假设图 G中顶点 y 是顶点 x 的一个邻接点,
返回除 y 之外顶点 x 的下一个邻接点的顶点号,若 y 是 x 的最后
一个邻接点,则返回 -1
*/

// 深度优先遍历 
bool visited[MAX_VERTEX_NUM]; // 标记访问数组

void DFSTraverse(Graph G) {
	for(v = 0; v < G.vexnum; v ++) {
		visited[v] = FALSE;   			// 初始化已访问标记数据 
	}
	for(v = 0; v < G.vexnum; v ++) {	// 从顶点 0 开始遍历 
		// 有可能是无向图,所以需要遍历每一个顶点 
		if(!visited(v)) {
			DFS(G,v);
		}
	} 
	return ; 
} 

void DFS(Graph G,int v) { // 从顶点 v 出发,深度优先遍历图 G 
	visit(v);			  // 访问顶点 v  		
	visited[v] = TRUE;	  // 标记已访问过该顶点
	for(w = FirstNeighbor(G,v);w >= 0; w = NextNeighor(G,v,w)) {
		if(!visited(w)) {
			DFS(G,w);
		}
	} 
	return ;
} 

4、图的广度优先遍历

// 广度优先遍历
bool visited[MAX_VERTEX_NUM]; // 标记访问数组
void BFSTtraverse(Graph G) {
	for(int i = 0; i < G.vexnum; i ++) {
		visited[i] = FALSE; 	// 访问数组初始化 
	} 
	InitQueue(Q);
	for(int i = 0; i < G.vexnum; i ++) {
		if(!visited[i]) {  		// 对每个连通分量调用一次 BFS 
			BFS(G,i);			// 对没有访问过的顶点进行BFS遍历 
		}
	}
	return ; 
} 
void BFS(Graph G,int v) {	// 从顶点 v 出发,进行广度优先遍历
	visit(v);
	visited[v] = TRUE;		// 标记顶点 v 已经访问过 
	EnQueue(Q,v); 			// 将顶点 v 进行入队
	while(!isEmpty(Q)) {
		v = DeQueue(Q,v);		// 顶点 v 出队
		// 检测 v 所有的邻接点 
		for(w = FirstNeighbor(G,v); w >= 0; w = NextNeighbor(G,v,w)) {
			if(!visited(w)) {
				visit(w);
				visited[w] = TRUE; 	
				EnQueue(Q,w); 
			}
		} 
	} 
	return ;
	
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TensorLink

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值