鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者 、51CTO(Top红人+专家博主) 、github开源爱好者(go-zero源码二次开发、游戏后端架构 https://github.com/Peakchen)
YOLOv8改进 | 检测头篇 | 利用DySnakeConv改进检测头专用于分割的检测头(全网独家首发,Seg)
介绍
本篇介绍了一种利用动态蛇形卷积(DySnakeConv)改进YOLOv8检测头的分割专用检测头,可以显著提升YOLOv8模型在图像分割任务上的精度。
原理详解
传统的YOLOv8检测头采用固定结构的卷积层进行特征提取,存在信息损失和语义偏差问题,导致分割精度不佳。
DySnakeConv是一种动态可变形的卷积结构,能够根据输入图像的特征信息自适应调整卷积核形状,有效解决了信息损失和语义偏差问题,提升了分割精度。
应用场景解释
该方法适用于各类图像分割任务,尤其适合处理复杂背景、多尺度目标、细粒度分割等场景。
算法实现