2D目标检测模型表现总览

本文汇总了2D目标检测领域的多种模型,如YOLOV5系列、YOLOV3系列、SSD、Retinanet及FasterRCNN等,在COCO数据集上的表现,包括AP值、FPS、参数量及计算量等关键指标,便于读者直观了解各模型的优劣。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

2D检测领域各种模型层出不穷,为了对他们有一个直观的印象,想要总结这么一张表。强烈欢迎大家补充、修正、更改以及完善!可以在本文留言,或者去github上修改,谢谢!

模型总览

模型APtestAP50FPSParamsFLOPSYear
YOLOV5s36.1(coco2017)55.3476(V100)7.5M13.2B2020
YOLOV5m43.5(coco2017)62.5333(V100)21.8M39.4B2020
YOLOV5x49.0(coco2017)67.4164(V100)89.0M166.4B2020
YOLOV3-spp45.5(coco2017)65.2222(V100)63.0M118.0B2018
YOLOV3-spp-60.6(coco)20(Titan X)-141.45B2018
YOLOV3-416-55.3(coco)35(Titan X)-65.86B2018
YOLOV3-tiny-33.1(coco)220(Titan X)-5.56B2018
SSD300-41.2(coco)46(Titan X)--2016
SSD513-50.4(coco)8(Titan X)--2016
Retinanet-50-500-50.9(coco)14(Titan X)--2017
Retinanet-101-500-53.1(coco)11(Titan X)--2017
Faster RCNN(VGG 16)-42.7(coco)7(TitanX)--2015

注:

  • FLOPS: 浮点运算次数,用来衡量模型的计算量的大小。
  • Params: 参数的数量。
  • APtest 对应 COCO test-dev2017 结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值