【数据结构笔记27】树习题:完全二叉搜索树(Complete Binary Search Tree)

这篇笔记探讨了完全二叉搜索树(CBST)的题意,分析了在实现过程中选择数组而非链表的原因。核心算法包括递归解决方法和层序遍历,其中涉及到计算左子树规模的细节,以及排序算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本次笔记内容:
树习题-CBST. 1 数据结构的选择
树习题-CBST. 2 核心算法
树习题-CBST. 3 计算左子树的规模

题意理解

在这里插入图片描述

如上图右侧,输入一组数,存储到一棵完全二叉树中,并满足二叉搜素树的性质。最后输出完全二叉树层序遍历的结果。

分析:用链表还是数组表示树

本题目中需要的操作:

  • 填写数字(某种遍历);
  • 层序遍历。

分析:

  • 完全二叉树,不浪费空间;
  • 层序遍历 == 直接顺序输出;
  • 因此选择数组。

核心算法

给定了一个n以后,完全二叉树的结构是固定的。

因此,左右子树的结点数便很好确定下来。

在这里插入图片描述

如上图右边。先对数字从小到大排序,根据完全二叉树结果,找到根结点位置。找到根结点后,进入了一个递归的解决方案。

核心递归算法
void solve(int ALeft, int ARight, int TRoot)
{
   
   
    // 初始调用为solve(0, N-1, 0)
    n = ARight - ALeft + 1; // 传入数组段长度
    if (n == 0)
        return;
    L = GetLeftLength(n); // 计算n个结点的树其左子树有多少个结点
    T[TRoot] = A[ALeft + L];
    LeftTRoot = TRoot * 2 + 1;
    RightTRoot = LeftTRoot + 1;
    solve(ALeft,<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值