【NLP】一种自写的分词算法-中文基于字,英文基于单词,支持自定义字典

本文介绍了在NLP任务中,为应对特定需求而自编的分词算法,该算法针对中文以字为单位,英文以单词为单位进行分词。在没有特殊需求时,推荐使用jieba或spacy等成熟工具。提供了算法实现的简单代码,并给出使用示例,支持加载内置或自定义字典。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

做nlp任务时,对于文本的处理经常会涉及到分词这个问题。有时为了做实验也不得不构建自己的分词方法,例如subword,以及本文介绍的中文基于字,英文基于词的场景。因为汉语文本会涉及英文相关内容所以才这么说的,其实下文中是英文基于单词,除英文外基于字符。如果没有这个需求,还是使用jieba,spacy等分词工具吧。

算法实现

算法实现比较简单,下面的代码只是作为我日常使用的工具类而已。具体原理就不多介绍了,看看源码你就懂了。

import os
import string


class SegWord(object):

    def __init__(self
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮AI记

好好学习,天天向上

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值