【NLP】基于python fasttext的文本分类

本文介绍了如何使用Python的fasttext库进行文本分类。通过数据准备、模型训练、测试及应用,展示了fasttext在文本分类任务上的简单高效。同时提到了fasttext对多标签分类的支持,并强调了数据处理在提升模型效果中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

文本分类中的深度学习算法比较多,各种算法也由于其复杂度适应不同的场景。这次介绍的fasttext也是一个结构比较简单模型。结构虽然简单,但效果不错,还快。并且除了python有相关实现的包外,在工程方面还有Java相关的实现以及还有C语言版本的等。总体来说,这个模型在工业上使用的也比较多。fasttext是由Facebook发表的出算法,该论文借鉴了Word2Vec的一些思想,总体也比较简单,但是效果好。对原文感兴趣的可以参见论文:Bag of Tricks for Efficient Text Classification
本文则直接介绍如何使用facebook推出的fasttext包,该包的官方地址:fasttext官方文档,源码地址:fasttext

fasttext除了可以做进行文本分类以外,也可以训练词向量。官方提供了157门语言的词向量,如下图所示:
fasttext词向量

该图对应的链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮AI记

好好学习,天天向上

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值