【NLP】基于隐马尔可夫模型(HMM)的命名实体识别(NER)实现

本文介绍了如何使用隐马尔可夫模型(HMM)进行命名实体识别(NER)任务。首先回顾了HMM的基本理论,接着详细讲解了数据加载、HMM模型实现的各个模块,包括数据加载、模型训练与使用。实验数据来源于公开的简历NER数据集,并通过seqeval工具进行模型效果评估。最后,讨论了模型训练和使用过程中的关键点,如概率为0的处理、OOV问题的解决等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

上篇文章【NLP】再看隐马尔可夫模型(HMM)原理已经介绍了隐马尔可夫模型的基本理论和相关概念。命名实体识别(named entity recognition, NER)又是NLP领域一项非常基础的任务也是信息抽取,知识图谱等领域中非常基础的内容。下面我们来看看如何使用HMM进行NER任务。程序数据与源码已上传GitHub:https://github.com/Htring/HMM_NER.

实验数据

程序里使用的数据来源与项目:https://github.com/luopeixiang/named_entity_recognition 的简历NER数据.
为了能够使用seqeval工具评估模型效果,将原始数据中“M-”开头的标签处理为“I-”.

模型实现

模型实现主要包含三个模块:

  • 数据加载模块
  • HMM模型实现模块
  • 模型训练和模型使用模块

数据加载模块

延续以往书写dat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮AI记

好好学习,天天向上

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值