【NLP】文本匹配——Simple and Effective Text Matching with Richer Alignment Features(RE2)模型实现

本文介绍了如何复现RE2模型,一个用于文本匹配的深度学习模型。通过pytorch_lightning进行训练封装,数据处理、模型实现、训练与评估等步骤详细展开。在测试集上取得了0.834的准确率,接近原项目的0.839。文章强调了在实际实现中的一些关键细节和设计模式,以及与ESIM模型的对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

前文【NLP】文本匹配——Simple and Effective Text Matching with Richer Alignment Features阅读与总结(RE2)已经简要地介绍了RE2的原理,下面就参照着原文及其网上的开源代码进行该模型的复现。为了能够验证模型是否复现成功,并且我更偏向做中文的相关任务,对比开源项目:https://github.com/zhaogaofeng611/TextMatch在对应数据的复现结果,其在测试集上的ACC为:0.8391.
该论文pytorch版源码如下:https://github.com/alibaba-edu/simple-effective-text-matching-pytorch
感觉源码书写的挺好,就阅读了源码以及对其进行适当的修改以适应使用pytorch_lightning的训练模式。大家有兴趣的也可以看看源码。

原文整体来说介绍相对简单,但是在复现中一些细节问题很重要。实现源码已上传到我的github上:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮AI记

好好学习,天天向上

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值