【NLP】一种基于联合方式的三元组抽取模型——CasRel

CasRel是ACL2020提出的一种解决实体重叠关系的三元组抽取模型,它采用级联二元标注框架,结合BERT进行特征提取。模型包括BERT编码器和级联解码器,后者由Subject Tagger和Relation-specific Object Taggers组成,有效地处理了EPO(实体对重叠)和SEO(单实体重叠)问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

关系抽取是自然语言处理中一个比较基础的任务,除了关系抽取之外还有类似的任务如:属性抽取等。这些任务也都可看成三元组抽取,即(subject,predicate,object)。常见的抽取范式包含:

  1. 基于pipeline的分布抽取方式,在已知两个实体subject和object,去预测predicate。
  2. 联合抽取方式,一个模型同时将subject,predicate和object抽取出来。

现实的场景中还存在重叠关系情况,那么针对这种情况该如何解决呢?,ACL2020有一篇论文:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction介绍了如何一种级联的并解决嵌套的实体的三元组(文中介绍的是关系抽取)抽取模型。下面我们来看看这篇论文介绍的内容。

背景

早期基于pipeline的方法首先识别出语句中的所有实体,然后在对所有的实体对分类。这种方式的一个缺点是:实体识别过程中的误差会被引入到关系抽取的环节中,如下图中的Normal情况。

现有的联合抽取模型中不能够有效地解决:一个句子包含多个相互重叠的关系三元组。如下图中的EPO和SEO。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮AI记

好好学习,天天向上

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值