题目大意:给出n个学生,编号为1~n,要求学生坐在一排并且相邻的学生编号相差不能为1,求出满足这样要求的最大学生数量并输出其中一种方案。
解题思路:其实让学生编号相差不能为1,就会想到奇数,偶数分成两堆即可。但对于小于等于4的数要特判断一下。所以下面我就直接上代码了吧。。。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <map>
#include <cmath>
#include <queue>
#include <string>
using namespace std;
int n;
int main()
{
while(~scanf("%d",&n))
{
if(n==1||n==2)//因为2只能输出1
{
printf("1\n1\n");
continue;
}
if(n==3)
{
printf("2\n1 3\n");
continue;
}
if(n==4)
{
printf("4\n2 4 1 3\n");
continue;
}
if(n==5)//因为我是奇数在前 偶数在后 所以用特判断一下5
{
printf("5\n5 3 1 4 2\n");
continue;
}
else
{
printf("%d\n",n);//打印总数
for(int i=1;i<=n;i++)
{
if(i&1!=0)
printf("%d ",i);//奇数
}
for(int j=2;j<=n;j++)
{
if(j%2==0)
printf("%d ",j);//偶数
}
cout<<endl;
}
}
return 0;
}
END!!!!!!!!!!!!!!!!!!!!!!!!