1. 问题描述
不使用加法(+)、减法(-)、乘法(*)和除法(/)操作,求两个整数的和。
2. 思路
-
可以从位运算上考虑,将两个整数以二进制表示,两个数的加法,即对应位上的加法,如果两个数的某一位不同(一个为0,一个为1),则相加后该位为1;如果相同,分两种情况,同为0,则相加后还是0,如果同为1,相加后结果仍为0,但需要向更高位进位;
-
于是我们发现,对位进行相加时,如果两个位相同,结果为0,不同,结果为1,这即位的异或运算;进位仅发生在两个位同为1的情况下,即位的与运算,与运算的结果,位为1的表示该位上发生了进位,进位实质上就是在更高位上加1,即左移一位,于是,最终的结果为异或的结果与进位的结果之和,问题又回到了求两个数之和,重复上述操作,直到进位为0为止;复杂度为O(n)。
例如,求01100101和00101100的和:
[xor: 01001001, and: 00100100, <<: 01001000]->[xor: 00000001, and: 01001000, <<: 10010000]->[xor: 10010001, and: 00000000, <<: 00000000]->[r