A prova analisa quatro casos possíveis para os sinais de x e y e demonstra que em todos eles a desigualdade |x + y| ≤ |x| + |y| é válida. Uma segunda forma de prova nota que |x| ≥ x, |y| ≥ y e |x + y| é igual ao maior entre x + y e -(x + y), o que implica que |x| + |y| ≥ |x + y|. Portanto, a desigualdade é verdadeira para qualquer valor de x e y.