LISTA DE EXERCÍCIOS 1º ANO - E.M
Professora Andréia
1. Calcule:
a)
62 
b)
15 
c)
53 
d)
4315 
e)
52 
f)
)8(2)5( 
g)
1274 
h)
93 
2. Resolva as equações abaixo:
a) 212  xx






 3;
3
1
S
b) 323152 22
 xxxx  6;13S
c) 31 x  4;2S
d) 1
12
3



x
x
sendo 






2
1
x







3
4
S
3. Qual o valor de x em |2x – 3| =
4
1
?
4. A soma e o produto das raízes da equação
|x|2 – 2 . |x| - 8 = 0 são?
5. Qual o número de raízes da equação |2x – 1|
= |1 – x| ?
6. O domínio da função real de variável real
definida por f(x) = 3|12| x é:
a)  2|  xRx
b)  21|  xRx
c)  21|  xouxRx
d)






 3
2
1
| xRx
7. Determine a solução da equação modular
|𝑥² − 5𝑥| = 6 :
8. Determine o valor de x na equação modular
|𝑥|² + 2|𝑥| − 15 = 0.
9. Revolva a inequação |3𝑥 + 2| > 5:
10.Determine o domínio da função 𝑓(𝑥) =
1
|𝑥|−5
11.(UFG) Os zeros da função 𝑓(𝑥) = |
2𝑥−1
5
| − 3
são:
12. (FEI-SP) Se |2𝑥 − 1| ≥ 3, então :
a) 𝑥 ≤ −1 𝑜𝑢 𝑥 >≥ 2
b) 𝑥 ≥ 3
c) 𝑥 ≤
1
2
d) −1 ≤ 𝑥 ≤ 2
13. Dada a função f: IR  IR definida por
𝑓(𝑥) = |3 – 𝑥| + 4, calcule:
a) f(8) b) f(-1) c) f(3) d) f(0)
14. Resolva:
a) |6 – x| > 10 c) |x2 – 5x| = 6
b) |3x – 1| < 5 d) |x2 – 6| = -1
15.Dada a função f: IR  IR definida por
f(x) = |3 – x| + 4, calcule:
a) f(8) b) f(-1) c) f(3) d) f(0)
16. Construa o gráfico da função f:R→R
definida por f(x) = |3 – x| + 4.
17. Construa o gráfico da função f:R→R
definida por f(x) = 1 - |x - 1|.
18. Construa o gráfico da função real h,
definida por h(x) = |x + 2| - 2|x - 2|.
19. Construa o gráfico das seguintes funções:
a) f(x) = 3x
b) f(x) = x + 2
c) f(x) = 322
 xx
d) f(x) = 2
4x x
e) f(x) = 2
4x 

Módulo, equações modulares e funções modulares 1º ano

  • 1.
    LISTA DE EXERCÍCIOS1º ANO - E.M Professora Andréia 1. Calcule: a) 62  b) 15  c) 53  d) 4315  e) 52  f) )8(2)5(  g) 1274  h) 93  2. Resolva as equações abaixo: a) 212  xx        3; 3 1 S b) 323152 22  xxxx  6;13S c) 31 x  4;2S d) 1 12 3    x x sendo        2 1 x        3 4 S 3. Qual o valor de x em |2x – 3| = 4 1 ? 4. A soma e o produto das raízes da equação |x|2 – 2 . |x| - 8 = 0 são? 5. Qual o número de raízes da equação |2x – 1| = |1 – x| ? 6. O domínio da função real de variável real definida por f(x) = 3|12| x é: a)  2|  xRx b)  21|  xRx c)  21|  xouxRx d)        3 2 1 | xRx 7. Determine a solução da equação modular |𝑥² − 5𝑥| = 6 : 8. Determine o valor de x na equação modular |𝑥|² + 2|𝑥| − 15 = 0. 9. Revolva a inequação |3𝑥 + 2| > 5: 10.Determine o domínio da função 𝑓(𝑥) = 1 |𝑥|−5 11.(UFG) Os zeros da função 𝑓(𝑥) = | 2𝑥−1 5 | − 3 são: 12. (FEI-SP) Se |2𝑥 − 1| ≥ 3, então : a) 𝑥 ≤ −1 𝑜𝑢 𝑥 >≥ 2 b) 𝑥 ≥ 3 c) 𝑥 ≤ 1 2 d) −1 ≤ 𝑥 ≤ 2 13. Dada a função f: IR  IR definida por 𝑓(𝑥) = |3 – 𝑥| + 4, calcule: a) f(8) b) f(-1) c) f(3) d) f(0) 14. Resolva: a) |6 – x| > 10 c) |x2 – 5x| = 6 b) |3x – 1| < 5 d) |x2 – 6| = -1 15.Dada a função f: IR  IR definida por f(x) = |3 – x| + 4, calcule: a) f(8) b) f(-1) c) f(3) d) f(0) 16. Construa o gráfico da função f:R→R definida por f(x) = |3 – x| + 4. 17. Construa o gráfico da função f:R→R definida por f(x) = 1 - |x - 1|. 18. Construa o gráfico da função real h, definida por h(x) = |x + 2| - 2|x - 2|. 19. Construa o gráfico das seguintes funções: a) f(x) = 3x b) f(x) = x + 2 c) f(x) = 322  xx d) f(x) = 2 4x x e) f(x) = 2 4x 