1
RADICIAÇÃO
A radiciação é a operação inversa da potenciação.
Sabemos que: a)
b)
c)
Sendo a e b números reais positivos e n um número inteiro maior que 1, temos, por definição:
sinal do radical
n  índice Quando o índice é 2, normalmente não se escreve.
a  radicando
b  raiz
Raiz de um número real
ÍNDICE PAR
Se n é par, todo número real positivo tem duas raízes.
Exemplo:
Como o resultado de uma operação deve ser único, determinaremos que:
Exemplos:
a) c)
b) d) 4
16−
O B S E R V A Ç Ã O
2
NÃO existe raiz real de um número negativo se o índice do radical for par.
ÍNDICE ÍMPAR
Se n é impar, cada número real tem apenas uma única raiz.
EXERCÍCIOS
1- Complete a tabela:
radical
índice 2 3
radicando 5 9
2- Determine as raízes:
a) f) l)
b) g) m)
c) h) n)
d) i) o)
e) j) p)
3- Calcule, caso exista em
a) e) i)
b) f) j)
c) g) l)
3
d) h) m)
4- Calcule:
a) b) c)
d) e) f)
g) h) i)
POTÊNCIA COM EXPOENTE FRACIONÁRIO
Se a é um número real positivo e é um número racional, com m e n inteiros e n > 0, definimos:
EXEMPLOS:
a) b)
Exercícios
5- Escreva em forma de potência com expoente fracionário.
=
6- Escreva em forma de radical.
c) =
b) d) f)
SIMPLIFICAÇÃO DE RADICAIS
3 9
124
5 15
3 15
) 5
) 7
) 9
) 4
b
c
d
e
=
=
=
=
20
2
4
6
) 9
)
)
)
g
h x
i x
j a
=
=
=
=
84
4 2
6 6
8 4
)
)
)
) a
m a
n a x
o a x
p x
=
=
=
=
4
Simplificar um radical significa reescrevê-lo sob uma forma mais simples e equivalente ao que foi
dado.
Veja a seguir alguns casos de simplificação:
1º caso: O índice do radical e o expoente do radicando são divisíveis por um mesmo número
(diferente de zero).
Exemplo: a) = b)
c) d)
7- Simplifique os radicais
a) = b) c) d)
e) f) g) h)
i) j) l) m)
2º caso: O expoente do radicando é um múltiplo do índice.
Divide-se o expoente do radicando pelo índice do radical, extraindo o radicando.
Exemplos: a) = 75
b) = 74
c) = 75
d) a³
e) = x5
8- Simplifique os radicais.
a) = f) = l) =
3º caso: O expoente do radicando é maior que o índice.
5
Nesse caso, decompomos o expoente do radicando em fatores de modo que se tenha expoentes
múltiplos do índice.
Exemplos:
9- Simplifique os radicais.
10- Simplifique os radicais.
Ex.: a) 3 3 5
x a =
2 3 2 7
4 5 6
) c) a
) d)
a a m m
b a x a
= =
= 3 7
m =
11-Simplifique os radicais.
3
5
3 4
54
) 49
) 9x
) 8a
) 16
a m
b
c
d m
=
=
=
=
3 8
3 10
5
4
) 27a
) 8m
) 4
) 25
e
f
g a
h a x
=
=
=
=
12- Calcule.
11
74
3 5
)
)
)
a x
b a
c m
=
=
=
7
3 7
74
5 6
7 9
)
)
)
) x
)
a a
b m
c m
d
e a
=
=
=
=
=
5
9
3 10
94
5 8
) 7
) 2
) 5
) 7
) 6
f
g
h
i
j
=
=
=
=
=
6
3
3
33
5 3
5 6
7 54
5 5
) 36 49
) 8 64
) 100 64
) 125 1
) 1 9 8
) 100 32 0
) 16 1 1
) 2. 49 3. 1 0
a
b
c
d
e
f
g
h
− =
+ =
− − =
− − − =
+ − =
+ − + =
+ − − =
− + =
13- Determine as raízes.
3
49
)
25
121
)
100
1
)
8
a
b
c
=
− =
− =
3
4
5
27
)
1000
16
)
81
32
)
243
d
e
f
=
=
=
14- Qual o valor da expressão
1
5,5
2 ?
9
+
15- Simplifique os radicais.
7
( )
2
6
2
2 6
) 121x
) 225
)
) 16m
a
b x
c x y
d y
=
=
+ =
=
6 4
3 6
3 4
4 10
) 81
) 27
) 8
) 49
e x y
f x
g m
h a x
=
=
=
=
16- Qual o valor de expressão
( )
2 3
0
2 27
5 2
− − − −
−
?
17- Qual o valor de expressão
3 3
1 8 4
?
9 16
− + +
+
18- Qual o valor de expressão 22 7 2 4 ?+ + +
19- Simplificando o radical 10
1024 , temos:
a) 6 b) 4 c) 2 d) 0
20- Simplifique o radical 3
32
.
4
21- Simplifique o radical
75
12
.
22- Qual o valor numérico da expressão 2
2. . 21.x y x y− − , para x = 12 e y = 3.
23- Use propriedades dos radicais e consulte a tabela para achar um valor aproximado dos radicais:
) 12
) 18
) 63
) 80
) 54
a
b
c
d
e
≅
≅
≅
≅
≅
2 1,41
3 1,73
5 2,23
6 2,44
7 2,64
≅
≅
≅
≅
≅
OPERAÇÕES COM RADICAIS
8
Para adicionar ou subtrair, os radicais precisam ser semelhantes.
Dois ou mais radicais são semelhantes quando possuem o mesmo indicie e o mesmo radicando.
Exemplos:
 RADICAIS SEMELHANTES
( ) (
 RADICAIS NÃO-SEMELHANTES
 os radicandos são diferentes
(  os índices são diferentes
Exercícios:
24- Responda em quais itens abaixo os radicais são semelhantes.
3 3
4
) 5 2 e 3 2
) 2 7 e 5 7
) 4 3 3
) 5 e 2 5
a
b
c e
d
−
3
) 7 2 e 7 3
) 3 2 e 6 2
) 4 2, 5 2 e 2
) 7 5, 2 5 e 5
e
f
g
h
−
−
ADIÇÃO E SUBTRAÇÃO
1º caso: Os radicais não são semelhantes.
 Deve-se extrair as raízes (exatas ou aproximadas)
 Somar ou subtrair os radicais.
Exemplos:
16 9
49 25
2 3
+ =
− =
+ =
25- Calcule:
) 4 9
) 25 16
) 49 16
) 100 36
) 4 1
a
b
c
d
e
+ =
− =
− =
− =
− =
3
3 4
3 3
3
) 25 8
) 27 16
) 125 8
) 25 4 16
) 49 25 64
f
g
h
i
j
− =
+ =
− =
− + =
+ − =
9
26- Coloque = ou ≠ para tornar a sentença verdadeira.
) 2 5.......... 7 c) 9 4..........5
b) 9 4........... 13 d) 16 9..
a + +
+ − ...... 7
2º caso: Os radicais são semelhantes.
Exemplos:
3 3
5 2 3 2
6 7 2 7 7
6 5 2 5
+ =
− + + =
− =
27- Efetue as adições e subtrações.
4 4
3 3 3 3
4 4 4
) 2 7 3 7 7 7
) 8 3 10 3 5 3 2 3 6 3
) 9 5 5 2 5 9 5 5
) 5 2 5
) 10 5 10 2 10
) 3 2 8 2 2 2 2
) 8 8 4 8
) 7 2 3 2 2 2
a
b
c
d
e
f
g
h
+ + + =
− + − − =
− + + + =
+ =
+ − =
− + − =
+ − =
− + =
3 3 3 3
4 4 4 4 4
5 5 5
3 3
) 4 6 6 6 2 6 7 6
) 25 12 16 12 12 4 12
) 27 2 27 3 27 5 27 15 27
) 8 8 8 12 8
) 6 9 3 9 10 9
) 3 16 2 8 3 10 2
) 8 10 4 8 4 10 8 8
) 6 5 2 6 5 9 6
i
j
l
m
n
o
p
q
− + − =
− + − =
+ + + − =
+ − =
− + =
− + − =
+ − − =
+ − + =
MULTIPLICAÇÃO E DIVISÃO DE RADICAIS
Há duas situações em que se pode multiplicar ou dividir radicais: quando os índices são iguais e quando são
diferentes. Iremos estudar somente os índices iguais.
Exemplos:
44
5. 7
4 2.5 3
10 : 2
15 6 :3 2
=
=
=
=
10
Exercícios
28- Efetue as multiplicações e divisões.
3 3
44
33
3 3
) 2. 7
) 5. 10
) 6. 2
) 15. 2
) 7. 4
) 2 3.5 7
) 3 7.2 5
) 2 5.3 6
) 5 3. 7
a
b
c
d
e
f
g
h
i
=
=
=
=
=
=
=
=
33
4 4
3 3
4 4
3 3
) 15 : 3
) 20 : 2
) 15 : 5
) 40 : 8
) 30 : 10
) 12 25 : 2 5
) 18 14 :6 7
) 10 8 : 2 2
) 20 2 :5 3
j
l
m
n
o
p
q
r
s
=
=
=
=
=
=
=
=
=
29- Multiplique os radicais e simplifique os produtos obtidos.
55
3 3
) 2. 18
) 32. 2
) 8. 4
) 49. 7
a
b
c
d
=
=
=
=
3 3
) 4. 2
) 3. 12
) 3. 75
) 2. 3. 6
e
f
g
h
=
=
=
=
30- Efetue as multiplicações e divisões.
11
5 5
9 95 3
3 3
) .
) a :
) a.
a a am
b a
c a
=
=
=
7 7
4 4
3 3
) 5 : 15
) 25. 5
) 12 : 2
d
e
f
=
=
=
POTENCIAÇÃO
Observe: 
Aplicando a definição de potência, temos:
= =
 =
 =
Conclusão:    conservamos o índice e elevamos o radicando à potência indicada.
Exemplo:
31- Efetue a potenciação de radicais.
( ) ( )
( ) ( )
( )
2 2
3 3
23
5 25
5
6
) 7 d) a
) 2 e) m
) 5
a
b
c
= =
= =
= ( )
3
7 2
f) m =
32- Calcule as seguintes situações:
Exemplo:  ( )
4
4 2
3 3 3= =
( ) ( )
( ) ( )
( )
4 9
3
6 4
3
6
) 5 d) 3
) 3 e) 5
) 5
a
b
c
= =
= =
= ( )
7
5
f) 2 =
( ) ( )
( ) ( )
4 2
7 3
2 3
3 2 7
3 5. 7
2. 2m
= =
= =
12
33- Efetue as potências.
( ) ( )
( ) ( )
( )
2 2
3
2 3
35
3
7
) 3 7 d) 3 5
) 4 3 e) 2 2
) 2 5
a
b
c
= =
= =
= ( )
3
f) 5 3 =
RADICIAÇÃO
Vejamos:
3 33 3
6 66
) 64 8 2 2
) 64 2 2
a
b
= = =
= =
Conclusão:  conservamos o radicando e multiplicamos os expoentes.
Simplificando, temos:  .m n m n
a a=
Exemplos: 
3 3.2 6
2.2 4
5 5 5
7 7 7
= =
= =
34- Escreva, usando um único radical.
3
4 3
5 3
) 8
) 5
) 2
) 3
a
b
c
d
=
=
=
=
3
4 5
3
) 5
) 7
)
) 8
e
f
g a
h
=
=
=
=
35- Calcule e simplifique os radicais abaixo.
a)
13
b)
c)
d)
RACIONALIZAÇÃO DE DENOMINADORES
FATOR RACIONALIZANTE  é uma expressão com radical, cujo produto com outro radical torna uma
expressão sem radical.
Exemplo  Qual é o fator racionalizante de ?__________________________________________
 Qual é o fator racionalizante de 5 ?_________________________________________
 Qual é o fator racionalizante de ?________________________________________
 Qual é o fator racionalizante de ?_____________________________________
 Qual é o fator racionalizante de 3 - 2?_______________________________________
36- Escreva o fator racionalizante de cada expressão.
) 5 d) 3 7
) 10 e) 8 3
) 12
a
b
c f) 8 11
37- Escreva o fator racionalizante de cada expressão.
3 23
5 52 3
4
) 5 d) 8 7
) 6 e) 4 8
) 9
a
b
c 6 5
f) 9 2
38- Escreva o fator racionalizante de cada expressão.
) 8 5 d) 3 1
) 6 2 e) 5 2 7
) 7 5 f) 2 3 5
a
b
c
+ +
− +
− −
14
39- Efetue as multiplicações.
3 5 52 2 33
3 6 62 4 23
7 74 3
) 5. 5 d) 6 . 6
) 8 7 . 7 e) 4 8 . 8
) 5 2 . 2
a
b
c 344
f) 9 3. 3
40- Efetue as multiplicações.
( ) ( )
( ) ( )
( ) ( )
) 6 2 . 6 2 =
) 3 1 . 3 1 =
c) 5+2 7 . 5 2 7 =
a
b
− +
+ −
−
RACIONALIZAÇÃO DE DENOMINADORES
RACIONALIZAR o denominador de uma fração é obter uma fração equivalente com denominador sem
radical, ou seja, racional.
 Uma fração não se altera quando numerador e denominador são multiplicados ou divididos por um
mesmo número, diferente de zero.
1º caso:
 O denominador é um radical de índice 2.
3
5
5
3 7
41- Racionalize os denominadores das frações.
4 4
) e)
3 3 2
7 5
) f)
2 2 6
1
)
5
a
b
c
2
g)
7 3
6 7
) h)
5 2 3
d
2º caso:
 O denominador é um radical com índice diferente de 2.
15
5 3
3
7
6
8
5
42- Racionalize os denominadores das frações:
3 3
3 24
5 4
7 2
) f)
7 3 5
5 8
) g)
2 5 3
2
)
3
a
b
c 4
5 72 3
3 6 2
7
h)
3 10
10 1
) i)
4 a
5 9
) j)
6 x
d
e
3º caso:
 O denominador é uma soma ou diferença de dois termos, sendo pelo menos um dos termos um radical.
4
5 2
5
3 2
+
−
43- Racionalize os denominadores das frações.
16
8
)
7 2
1
)
5 3
2
)
7 5
4
)
5 3
1
)
5 1
3
)
5 3
6
)
5 3 2
7
)
3 5 2
4 3
)
4 3
3
)
5 7
5
)
3 2 2
10
)
2 3
a
b
c
d
e
f
g
h
i
j
l
m
−
+
−
−
−
+
−
−
+
−
+
−
−
−

Radiciação

  • 1.
    1 RADICIAÇÃO A radiciação éa operação inversa da potenciação. Sabemos que: a) b) c) Sendo a e b números reais positivos e n um número inteiro maior que 1, temos, por definição: sinal do radical n  índice Quando o índice é 2, normalmente não se escreve. a  radicando b  raiz Raiz de um número real ÍNDICE PAR Se n é par, todo número real positivo tem duas raízes. Exemplo: Como o resultado de uma operação deve ser único, determinaremos que: Exemplos: a) c) b) d) 4 16− O B S E R V A Ç Ã O
  • 2.
    2 NÃO existe raizreal de um número negativo se o índice do radical for par. ÍNDICE ÍMPAR Se n é impar, cada número real tem apenas uma única raiz. EXERCÍCIOS 1- Complete a tabela: radical índice 2 3 radicando 5 9 2- Determine as raízes: a) f) l) b) g) m) c) h) n) d) i) o) e) j) p) 3- Calcule, caso exista em a) e) i) b) f) j) c) g) l)
  • 3.
    3 d) h) m) 4-Calcule: a) b) c) d) e) f) g) h) i) POTÊNCIA COM EXPOENTE FRACIONÁRIO Se a é um número real positivo e é um número racional, com m e n inteiros e n > 0, definimos: EXEMPLOS: a) b) Exercícios 5- Escreva em forma de potência com expoente fracionário. = 6- Escreva em forma de radical. c) = b) d) f) SIMPLIFICAÇÃO DE RADICAIS
  • 4.
    3 9 124 5 15 315 ) 5 ) 7 ) 9 ) 4 b c d e = = = = 20 2 4 6 ) 9 ) ) ) g h x i x j a = = = = 84 4 2 6 6 8 4 ) ) ) ) a m a n a x o a x p x = = = = 4 Simplificar um radical significa reescrevê-lo sob uma forma mais simples e equivalente ao que foi dado. Veja a seguir alguns casos de simplificação: 1º caso: O índice do radical e o expoente do radicando são divisíveis por um mesmo número (diferente de zero). Exemplo: a) = b) c) d) 7- Simplifique os radicais a) = b) c) d) e) f) g) h) i) j) l) m) 2º caso: O expoente do radicando é um múltiplo do índice. Divide-se o expoente do radicando pelo índice do radical, extraindo o radicando. Exemplos: a) = 75 b) = 74 c) = 75 d) a³ e) = x5 8- Simplifique os radicais. a) = f) = l) = 3º caso: O expoente do radicando é maior que o índice.
  • 5.
    5 Nesse caso, decompomoso expoente do radicando em fatores de modo que se tenha expoentes múltiplos do índice. Exemplos: 9- Simplifique os radicais. 10- Simplifique os radicais. Ex.: a) 3 3 5 x a = 2 3 2 7 4 5 6 ) c) a ) d) a a m m b a x a = = = 3 7 m = 11-Simplifique os radicais. 3 5 3 4 54 ) 49 ) 9x ) 8a ) 16 a m b c d m = = = = 3 8 3 10 5 4 ) 27a ) 8m ) 4 ) 25 e f g a h a x = = = = 12- Calcule. 11 74 3 5 ) ) ) a x b a c m = = = 7 3 7 74 5 6 7 9 ) ) ) ) x ) a a b m c m d e a = = = = = 5 9 3 10 94 5 8 ) 7 ) 2 ) 5 ) 7 ) 6 f g h i j = = = = =
  • 6.
    6 3 3 33 5 3 5 6 754 5 5 ) 36 49 ) 8 64 ) 100 64 ) 125 1 ) 1 9 8 ) 100 32 0 ) 16 1 1 ) 2. 49 3. 1 0 a b c d e f g h − = + = − − = − − − = + − = + − + = + − − = − + = 13- Determine as raízes. 3 49 ) 25 121 ) 100 1 ) 8 a b c = − = − = 3 4 5 27 ) 1000 16 ) 81 32 ) 243 d e f = = = 14- Qual o valor da expressão 1 5,5 2 ? 9 + 15- Simplifique os radicais.
  • 7.
    7 ( ) 2 6 2 2 6 )121x ) 225 ) ) 16m a b x c x y d y = = + = = 6 4 3 6 3 4 4 10 ) 81 ) 27 ) 8 ) 49 e x y f x g m h a x = = = = 16- Qual o valor de expressão ( ) 2 3 0 2 27 5 2 − − − − − ? 17- Qual o valor de expressão 3 3 1 8 4 ? 9 16 − + + + 18- Qual o valor de expressão 22 7 2 4 ?+ + + 19- Simplificando o radical 10 1024 , temos: a) 6 b) 4 c) 2 d) 0 20- Simplifique o radical 3 32 . 4 21- Simplifique o radical 75 12 . 22- Qual o valor numérico da expressão 2 2. . 21.x y x y− − , para x = 12 e y = 3. 23- Use propriedades dos radicais e consulte a tabela para achar um valor aproximado dos radicais: ) 12 ) 18 ) 63 ) 80 ) 54 a b c d e ≅ ≅ ≅ ≅ ≅ 2 1,41 3 1,73 5 2,23 6 2,44 7 2,64 ≅ ≅ ≅ ≅ ≅ OPERAÇÕES COM RADICAIS
  • 8.
    8 Para adicionar ousubtrair, os radicais precisam ser semelhantes. Dois ou mais radicais são semelhantes quando possuem o mesmo indicie e o mesmo radicando. Exemplos:  RADICAIS SEMELHANTES ( ) (  RADICAIS NÃO-SEMELHANTES  os radicandos são diferentes (  os índices são diferentes Exercícios: 24- Responda em quais itens abaixo os radicais são semelhantes. 3 3 4 ) 5 2 e 3 2 ) 2 7 e 5 7 ) 4 3 3 ) 5 e 2 5 a b c e d − 3 ) 7 2 e 7 3 ) 3 2 e 6 2 ) 4 2, 5 2 e 2 ) 7 5, 2 5 e 5 e f g h − − ADIÇÃO E SUBTRAÇÃO 1º caso: Os radicais não são semelhantes.  Deve-se extrair as raízes (exatas ou aproximadas)  Somar ou subtrair os radicais. Exemplos: 16 9 49 25 2 3 + = − = + = 25- Calcule: ) 4 9 ) 25 16 ) 49 16 ) 100 36 ) 4 1 a b c d e + = − = − = − = − = 3 3 4 3 3 3 ) 25 8 ) 27 16 ) 125 8 ) 25 4 16 ) 49 25 64 f g h i j − = + = − = − + = + − =
  • 9.
    9 26- Coloque =ou ≠ para tornar a sentença verdadeira. ) 2 5.......... 7 c) 9 4..........5 b) 9 4........... 13 d) 16 9.. a + + + − ...... 7 2º caso: Os radicais são semelhantes. Exemplos: 3 3 5 2 3 2 6 7 2 7 7 6 5 2 5 + = − + + = − = 27- Efetue as adições e subtrações. 4 4 3 3 3 3 4 4 4 ) 2 7 3 7 7 7 ) 8 3 10 3 5 3 2 3 6 3 ) 9 5 5 2 5 9 5 5 ) 5 2 5 ) 10 5 10 2 10 ) 3 2 8 2 2 2 2 ) 8 8 4 8 ) 7 2 3 2 2 2 a b c d e f g h + + + = − + − − = − + + + = + = + − = − + − = + − = − + = 3 3 3 3 4 4 4 4 4 5 5 5 3 3 ) 4 6 6 6 2 6 7 6 ) 25 12 16 12 12 4 12 ) 27 2 27 3 27 5 27 15 27 ) 8 8 8 12 8 ) 6 9 3 9 10 9 ) 3 16 2 8 3 10 2 ) 8 10 4 8 4 10 8 8 ) 6 5 2 6 5 9 6 i j l m n o p q − + − = − + − = + + + − = + − = − + = − + − = + − − = + − + = MULTIPLICAÇÃO E DIVISÃO DE RADICAIS Há duas situações em que se pode multiplicar ou dividir radicais: quando os índices são iguais e quando são diferentes. Iremos estudar somente os índices iguais. Exemplos: 44 5. 7 4 2.5 3 10 : 2 15 6 :3 2 = = = =
  • 10.
    10 Exercícios 28- Efetue asmultiplicações e divisões. 3 3 44 33 3 3 ) 2. 7 ) 5. 10 ) 6. 2 ) 15. 2 ) 7. 4 ) 2 3.5 7 ) 3 7.2 5 ) 2 5.3 6 ) 5 3. 7 a b c d e f g h i = = = = = = = = 33 4 4 3 3 4 4 3 3 ) 15 : 3 ) 20 : 2 ) 15 : 5 ) 40 : 8 ) 30 : 10 ) 12 25 : 2 5 ) 18 14 :6 7 ) 10 8 : 2 2 ) 20 2 :5 3 j l m n o p q r s = = = = = = = = = 29- Multiplique os radicais e simplifique os produtos obtidos. 55 3 3 ) 2. 18 ) 32. 2 ) 8. 4 ) 49. 7 a b c d = = = = 3 3 ) 4. 2 ) 3. 12 ) 3. 75 ) 2. 3. 6 e f g h = = = = 30- Efetue as multiplicações e divisões.
  • 11.
    11 5 5 9 953 3 3 ) . ) a : ) a. a a am b a c a = = = 7 7 4 4 3 3 ) 5 : 15 ) 25. 5 ) 12 : 2 d e f = = = POTENCIAÇÃO Observe:  Aplicando a definição de potência, temos: = =  =  = Conclusão:    conservamos o índice e elevamos o radicando à potência indicada. Exemplo: 31- Efetue a potenciação de radicais. ( ) ( ) ( ) ( ) ( ) 2 2 3 3 23 5 25 5 6 ) 7 d) a ) 2 e) m ) 5 a b c = = = = = ( ) 3 7 2 f) m = 32- Calcule as seguintes situações: Exemplo:  ( ) 4 4 2 3 3 3= = ( ) ( ) ( ) ( ) ( ) 4 9 3 6 4 3 6 ) 5 d) 3 ) 3 e) 5 ) 5 a b c = = = = = ( ) 7 5 f) 2 = ( ) ( ) ( ) ( ) 4 2 7 3 2 3 3 2 7 3 5. 7 2. 2m = = = =
  • 12.
    12 33- Efetue aspotências. ( ) ( ) ( ) ( ) ( ) 2 2 3 2 3 35 3 7 ) 3 7 d) 3 5 ) 4 3 e) 2 2 ) 2 5 a b c = = = = = ( ) 3 f) 5 3 = RADICIAÇÃO Vejamos: 3 33 3 6 66 ) 64 8 2 2 ) 64 2 2 a b = = = = = Conclusão:  conservamos o radicando e multiplicamos os expoentes. Simplificando, temos:  .m n m n a a= Exemplos:  3 3.2 6 2.2 4 5 5 5 7 7 7 = = = = 34- Escreva, usando um único radical. 3 4 3 5 3 ) 8 ) 5 ) 2 ) 3 a b c d = = = = 3 4 5 3 ) 5 ) 7 ) ) 8 e f g a h = = = = 35- Calcule e simplifique os radicais abaixo. a)
  • 13.
    13 b) c) d) RACIONALIZAÇÃO DE DENOMINADORES FATORRACIONALIZANTE  é uma expressão com radical, cujo produto com outro radical torna uma expressão sem radical. Exemplo  Qual é o fator racionalizante de ?__________________________________________  Qual é o fator racionalizante de 5 ?_________________________________________  Qual é o fator racionalizante de ?________________________________________  Qual é o fator racionalizante de ?_____________________________________  Qual é o fator racionalizante de 3 - 2?_______________________________________ 36- Escreva o fator racionalizante de cada expressão. ) 5 d) 3 7 ) 10 e) 8 3 ) 12 a b c f) 8 11 37- Escreva o fator racionalizante de cada expressão. 3 23 5 52 3 4 ) 5 d) 8 7 ) 6 e) 4 8 ) 9 a b c 6 5 f) 9 2 38- Escreva o fator racionalizante de cada expressão. ) 8 5 d) 3 1 ) 6 2 e) 5 2 7 ) 7 5 f) 2 3 5 a b c + + − + − −
  • 14.
    14 39- Efetue asmultiplicações. 3 5 52 2 33 3 6 62 4 23 7 74 3 ) 5. 5 d) 6 . 6 ) 8 7 . 7 e) 4 8 . 8 ) 5 2 . 2 a b c 344 f) 9 3. 3 40- Efetue as multiplicações. ( ) ( ) ( ) ( ) ( ) ( ) ) 6 2 . 6 2 = ) 3 1 . 3 1 = c) 5+2 7 . 5 2 7 = a b − + + − − RACIONALIZAÇÃO DE DENOMINADORES RACIONALIZAR o denominador de uma fração é obter uma fração equivalente com denominador sem radical, ou seja, racional.  Uma fração não se altera quando numerador e denominador são multiplicados ou divididos por um mesmo número, diferente de zero. 1º caso:  O denominador é um radical de índice 2. 3 5 5 3 7 41- Racionalize os denominadores das frações. 4 4 ) e) 3 3 2 7 5 ) f) 2 2 6 1 ) 5 a b c 2 g) 7 3 6 7 ) h) 5 2 3 d 2º caso:  O denominador é um radical com índice diferente de 2.
  • 15.
    15 5 3 3 7 6 8 5 42- Racionalizeos denominadores das frações: 3 3 3 24 5 4 7 2 ) f) 7 3 5 5 8 ) g) 2 5 3 2 ) 3 a b c 4 5 72 3 3 6 2 7 h) 3 10 10 1 ) i) 4 a 5 9 ) j) 6 x d e 3º caso:  O denominador é uma soma ou diferença de dois termos, sendo pelo menos um dos termos um radical. 4 5 2 5 3 2 + − 43- Racionalize os denominadores das frações.
  • 16.
    16 8 ) 7 2 1 ) 5 3 2 ) 75 4 ) 5 3 1 ) 5 1 3 ) 5 3 6 ) 5 3 2 7 ) 3 5 2 4 3 ) 4 3 3 ) 5 7 5 ) 3 2 2 10 ) 2 3 a b c d e f g h i j l m − + − − − + − − + − + − − −