我的成长记录史,一些碎碎念

博主从编程爱好者成长为研究智能化软件开发的学硕,分享了从初学到竞赛获奖,再到潜心科研的心路历程,强调不断学习和分享的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 2020/6/10

先自我介绍一下,我是一个非常热爱编程的小菜鸡,来CSDN社区很久了,学到了很多东西,我也想通过这个平台来发布一些优质内容(我尽量让我做的内容是优质内容哈)。
我会不定期分享一些我学完了的内容或者一些题解,通过我自己的语言来表述出来,这样我觉得不仅我能进步,我也能让你们得到一份资源学习(可能比不上其他的大佬,但我会努力的!)
我也会认真学习排版等各方面写博客的知识,想让自己的版面看起来好看一点,这样你们也会喜欢,对吧!
哈哈,未来可期,在这里共同见证我们的成长!
cout << "hello, world"
2020/6/10

2 2021/8/3

已经写了一年多了,感觉自己成长了很多,可是自己算法为什么还是这么菜呀!!!呜呜呜
2021/8/3

3 2021/12/25

已经退役了,拿了铜牌,蓝桥杯有国二,天梯赛也有国二。虽然有点遗憾,但至少努力奋斗过,还是会记得以前刷题的快乐,希望以后一直Accept。
2021/12/25

4 2022/4/5

快写了两年了,哈哈,时间过得真快呀,好好生活,好好学习,要在自己的领域发光发热。
2022/4/5

5 2022/10/15

学硕,研究方向:智能化软件开发。要开始学习机器学习了,潜心研究,希望能发表高水平高质量论文,立志成为一名具有影响力的学者。

内容概要:该论文探讨了一种基于粒子群优化(PSO)的STAR-RIS辅助NOMA无线通信网络优化方法。STAR-RIS作为一种新型可重构智能表面,能同时反射和传输信号,与传统仅能反射的RIS不同。结合NOMA技术,STAR-RIS可以提升覆盖范围、用户容量和频谱效率。针对STAR-RIS元素众多导致获取完整信道状态信息(CSI)开销大的问题,作者提出一种在不依赖完整CSI的情况下,联合优化功率分配、基站波束成形以及STAR-RIS的传输和反射波束成形向量的方法,以最大化总可实现速率并确保每个用户的最低速率要求。仿真结果显示,该方案优于STAR-RIS辅助的OMA系统。 适合人群:具备一定无线通信理论基础、对智能反射面技术和非正交多址接入技术感兴趣的科研人员和工程师。 使用场景及目标:①适用于希望深入了解STAR-RIS与NOMA结合的研究者;②为解决无线通信中频谱资源紧张、提高系统性能提供新的思路和技术手段;③帮助理解PSO算法在无线通信优化问题中的应用。 其他说明:文中提供了详细的Python代码实现,涵盖系统参数设置、信道建模、速率计算、目标函数定义、约束条件设定、主优化函数设计及结果可视化等环节,便于读者理解和复现实验结果。此外,文章还对比了PSO与其他优化算法(如DDPG)的区别,强调了PSO在不需要显式CSI估计方面的优势。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HeZephyr

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值