基于matplotlib的目标检测结果展示

本文介绍了目标检测任务中的边界框和类别可视化方法,通过Python代码演示了如何将检测到的多个目标及其位置在图像中标注出来,这对于理解目标检测算法的输出至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

在图像分类任务里,我们假设图像里只有一个主体目标,并关注如何识别该目标的类别。然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。在计算机视觉里,我们将这类任务称为目标检测(object detection)或物体检测。
本篇博文将主要介绍,如何将边界框和类别可视化。

边界框

在目标检测里,我们通常使用边界框(bounding box)来描述目标位置。边界框是一个矩形框,可以由矩形左上角的 x 和 y 轴坐标与右下角的 x 和 y 轴坐标确定。

python代码

import pandas as pd
import os
import matplotlib.pyplot as plt
import cv2 as cv


def bbox_to_rect(bbox, color):  # 本函数已保存在d2lzh包中方便以后使用
    # 将边界框(左上x, 左上y, 右下x, 右下y)格式转换成matplotlib格式:
    # ((左上x, 左上y), 宽, 高)
    return plt.Rectangle(
        xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
        fill=False, edgecolor=color, linewidth=2)


data = pd.read_csv('dev.csv')
print(data["label_path"].iloc[1])
boxes = []
labels = []
areas = []
iscrowd = []
with open(data['label_path'][4]) as f:
    for line in f.readlines()[1:]:
        temp = line.strip().split(' ')
        xmin = int(temp[1])
        ymin = int(temp[2])
        xmax = int(temp[3])
        ymax = int(temp[4])
        boxes.append([xmin, ymin, xmax, ymax])
        labels.append(int(temp[0]))
        areas.append((xmax - xmin) * (ymax - ymin))
        iscrowd.append(0)

image = cv.imread(data['img_path'][4])
fig = plt.imshow(image)
for i, box in enumerate(boxes):
    rect = bbox_to_rect(box, 'red')
    fig.axes.add_patch(rect)
    fig.axes.text(rect.xy[0]+24, rect.xy[1]+10, "pedestrian",
                  va='center', ha='center', fontsize=6, color='blue',
                  bbox=dict(facecolor='m', lw=0))
plt.show()

在这里插入图片描述

小结

在目标检测里不仅需要找出图像里面所有感兴趣的目标,而且要知道它们的位置。位置一般由矩形边界框来表示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值