前言
在图像分类任务里,我们假设图像里只有一个主体目标,并关注如何识别该目标的类别。然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。在计算机视觉里,我们将这类任务称为目标检测(object detection)或物体检测。
本篇博文将主要介绍,如何将边界框和类别可视化。
边界框
在目标检测里,我们通常使用边界框(bounding box)来描述目标位置。边界框是一个矩形框,可以由矩形左上角的 x 和 y 轴坐标与右下角的 x 和 y 轴坐标确定。
python代码
import pandas as pd
import os
import matplotlib.pyplot as plt
import cv2 as cv
def bbox_to_rect(bbox, color): # 本函数已保存在d2lzh包中方便以后使用
# 将边界框(左上x, 左上y, 右下x, 右下y)格式转换成matplotlib格式:
# ((左上x, 左上y), 宽, 高)
return plt.Rectangle(
xy=(bbox[0], bbox[1]), width=bbox[2]-bbox[0], height=bbox[3]-bbox[1],
fill=False, edgecolor=color, linewidth=2)
data = pd.read_csv('dev.csv')
print(data["label_path"].iloc[1])
boxes = []
labels = []
areas = []
iscrowd = []
with open(data['label_path'][4]) as f:
for line in f.readlines()[1:]:
temp = line.strip().split(' ')
xmin = int(temp[1])
ymin = int(temp[2])
xmax = int(temp[3])
ymax = int(temp[4])
boxes.append([xmin, ymin, xmax, ymax])
labels.append(int(temp[0]))
areas.append((xmax - xmin) * (ymax - ymin))
iscrowd.append(0)
image = cv.imread(data['img_path'][4])
fig = plt.imshow(image)
for i, box in enumerate(boxes):
rect = bbox_to_rect(box, 'red')
fig.axes.add_patch(rect)
fig.axes.text(rect.xy[0]+24, rect.xy[1]+10, "pedestrian",
va='center', ha='center', fontsize=6, color='blue',
bbox=dict(facecolor='m', lw=0))
plt.show()
小结
在目标检测里不仅需要找出图像里面所有感兴趣的目标,而且要知道它们的位置。位置一般由矩形边界框来表示。