efficientDet实战

EfficientDet结合EfficientNet主干网络和BiFPN,实现高效目标检测。在遥感影像操场检测任务中,通过复合缩放提高检测精度,参数量和计算成本大幅降低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


paper: https://arxiv.org/abs/1911.09070
code: https://github.com/SonwYang/efficientdet

前言

谷歌大脑团队的研究者发现,EfficientNets 的效率超过之前常用的主干网络。于是研究者将 EfficientNet 主干网络和 BiFPN、复合缩放结合起来,开发出新型目标检测器 EfficientDet,其准确率优于之前的目标检测器,同时参数量和 FLOPS 比它们少了一个数量级。

下图展示了 EfficientDet 的整体架构,大致遵循单阶段检测器范式。谷歌大脑团队的研究者将在 ImageNet 数据集上预训练的 EfficientNet 作为主干网络,将 BiFPN 作为特征网络,接受来自主干网络的 level 3-7 特征 {P3, P4, P5, P6, P7},并重复应用自上而下和自下而上的双向特征融合。然后将融合后的特征输入边界框/类别预测网络,分别输出目标类别和边界框预测结果。在这里插入图片描述

基于遥感影像的操场检测

数据集链接:https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-

dataset3.py

  1. 相关数据集格式为pascal_voc;
  2. 初始化参数image_dir为图片的路径;
  3. 初始化参数image_size为图片resize后的大小,如512
    该数据生成器加载后的影像为在这里插入图片描述

config.py

import torch
import glob

class Config(object):
    root = 'J:/dl_dataset/object_detection/playground/JPEGImages'

    class_dict = {'playground': 1}
    model_name = 'tf_efficientdet_d5'
    phi = model_name.split("_")[-1]
    bench_task = 'train'
    image_size = 512
    initial_checkpoint = glob.glob(f'./model_data/tf_efficientdet_{phi}*.pth')[0]
    batch_size = 2
    num_workers = 0
    n_epochs = 30
    lr = 0.001
    num_classes = 1

    folder = f'effdet_{phi}-cutmix-augmix'

    verbose = True
    verbose_step = 1

    step_scheduler = False  # do scheduler.step after optimizer.step
    validation_scheduler = True  # do scheduler.step after validation stage loss

    SchedulerClass = torch.optim.lr_scheduler.ReduceLROnPlateau
    scheduler_params = dict(
        mode='min',
        factor=0.5,
        patience=3,
        verbose=False,
        threshold=0.0001,
        threshold_mode='abs',
        cooldown=0,
        min_lr=1e-8,
        eps=1e-08
    )

配置完config后,直接main.py即可开展模型训练。

config_eval.py

测试图片路径

class Config(object):
    DATA_ROOT_PATH = 'J:/dl_dataset/object_detection/playground/test'

在predict.py中,设置模型和加载模型参数,预测结果如下图所示。
在这里插入图片描述

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值