为植物病害对象检测引入改进的 PlantDoc 数据集

PlantDoc是由印度理工学院发布的包含2,598张图像的数据集,用于植物疾病和健康状况的图像分类和对象检测。这个数据集涵盖了13种植物的27个类别,并且已在Roboflow上公开,提供多种注释格式以促进农业领域的计算机视觉研究。数据集的可用性有助于提高作物病害识别模型的效率,减少农业损失,并作为基准测试的开放资源。Roboflow对其进行了改进,修正了部分注释错误,便于研究者进行机器学习实验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景

到 2050 年,世界人口预计将达到 97 亿。这是一张大嘴。

技术正在推动下一代产量增长。计算机视觉对于更环保、更高效的生产尤其重要。例如,Blue River (John Deere) 的“See & Spray ”使机器能够实时进行杂草检测,使用的除草剂减少 90%,同时更有效地针对有问题的杂草。

在这里插入图片描述
但农业中的计算机视觉才刚刚开始——更多的开源数据是提高其采用率的关键。我们已经开始看到自动驾驶联合收割机、自动表型分析和自动拖拉机推动精密农业的革命。

PlantDoc 数据集简介

2019 年秋季,印度理工学院的研究人员发布了PlantDoc,这是一个包含 13 个植物物种和 27 个类别(17 个疾病;10 个健康)的 2,598 张图像的数据集,用于图像分类和对象检测。研究人员指出,数据集的创建花费了 300 多个人工小时的收集和注释。与 CropDeep 和 DeepWeeds 等类似数据集不同,该数据集可供公众免费下载,供深度学习研究人员免费使用!

在这里插入图片描述

将 PlantDoc 添加到 Roboflow 公共数据集

在Roboflow,我们致力于推进包括农业在内的所有行业的计算机视觉工作。我们将数据集托管在Roboflow 公共数据集上,以您可能需要的任何注释格式提供:VOC XML、COCO JSON、CreateML JSON,甚至 TFRecords。该数据集遵循与 Pratik Kayal 的 GitHub 版本相同的训练/测试拆分,以便轻松重现您的机器学习实验。

当我们将数据集添加到 Roboflow 并利用自动注释检查时,我们发现了改进的机会,因此数据集在某些方面与原始数据集略有不同。

在这里插入图片描述
首先,纠正了超过28个注释。在某些情况下,边界框略微超出框架,因此被裁剪为与图像边缘一致。还有一些人意外地限制了零像素并完全丢弃。其中 25 个在训练集中,3 个在测试集中。当人类被分配超过 300 小时的标签来创建 8,851 个边界框时,错误就会发生!Roboflow 会自动识别并纠正任何数据集的这些问题。

PlantDoc 的用例

正如 IIT 的研究人员在他们的论文中所说,“仅植物病害每年就给全球经济造成约 2200 亿美元的损失。” 早期识别植物病害的训练模型可显着提高产量潜力。

该数据集还用作基准测试的有用开放数据集。研究人员训练了YOLOv4、MobileNet和Faster-RCNN等对象检测模型和VGG16、InceptionV3 和EfficientNet等图像分类模型。

PlantDoc 数据集上的对象检测模型结果如下表所示。

在这里插入图片描述
PlantDoc 数据集上的分类模型结果如下表所示。
在这里插入图片描述
该数据集可用于推进一般农业计算机视觉任务,无论是健康作物分类、植物病害分类还是植物病害对象检测。

随着计算机视觉准备继续将农业转变为一个部门,我们很高兴看到如何使PlantDoc 数据集更易于访问促进研究兴趣。

数据集地址

https://github.com/pratikkayal/PlantDoc-Object-Detection-Dataset
https://public.roboflow.com/object-detection/plantdoc/1/download/voc

相关网址

https://bluerivertechnology.com/our-products/

### 植物病害语义分割实现方法 对于植物病害的语义分割任务,可以采用类似于YOLO系列的目标检测框架进行改进以适应分割需求。YOLOv5在其最新版本中引入了语义分割功能[^4],这表明基于YOLO架构开发语义分割模型具有可行性。 #### 数据准备 首先需要构建一个高质量的数据集用于训练。该数据集中应包含大量标注好的图像样本,其中不仅要有患病部位的信息,还需要精确标记健康部分和其他背景区域。这些标签通常是以像素级的方式给出,即每一个像素都对应着特定类别。 #### 训练过程 利用已有的深度学习库如PyTorch或TensorFlow搭建网络结构,并加载预训练权重加快收敛速度。针对具体应用场景调整超参数设置,比如学习率、批次大小等。考虑到农业领域可能存在样本不平衡的情况,在损失函数设计时需特别注意加权处理不同类别的贡献度。 ```python import torch from yolov5 import train, val # 假设这是自定义模块路径 if __name__ == '__main__': device = 'cuda' if torch.cuda.is_available() else 'cpu' # 设置训练配置文件路径及其他必要参数 opt = { "data": "./path/to/dataset.yaml", "cfg": "./models/yolov5s-seg.yaml", # 使用支持分割的任务配置 "weights": None, "device": device, ... } train.run(**opt) ``` #### 后处理与评估指标 完成训练后,通过测试集上的表现来衡量模型性能。常用的评价标准包括但不限于IoU (Intersection over Union),Dice系数以及平均精度均值(mAP)等。此外还可以借助混淆矩阵进一步分析各类别间的误分类情况。 --- ### 参考项目与教程资源链接 - **PlantDoc-OID**: 这是一个公开可用的大规模多标签疾病识别数据库,虽然主要面向的是图片级别的诊断而非逐像素预测,但对于理解问题域非常有价值。 - **Deep Learning for Plant Disease Detection and Segmentation using U-net on Potato Leaf Dataset**: 此论文介绍了如何应用Unet架构来进行马铃薯叶片疾病的自动检测和分割工作,提供了详细的实验流程和技术细节说明。 - **Semantic Segmentation of Wheat Rust Using DeepLabV3+ Model**: 文章展示了使用Deeplab V3 Plus算法解决小麦锈病定位难题的成功案例研究,附带完整的代码实现指南。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点PY

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值