收藏!使用Python读写Excel大数据文件的3种有效方式

有人问Python怎么处理大数据的Excel文件?

Python处理Excel大数据有很多方式,不过Excel撑死才104万行,能有多大的数据,一般用pandas读取就可以,pandas有专门的分块读取模式,比如说每次只读取1万行用于处理,这样就不会太占用内存。

pandas read_excel方法有专门的参数chunksize用于设置分块读取,代码示例如下:

import pandas as pd

# 读取'test_data.xlsx'大文件

# 分块读取以减少内存占用
chunk_size = 10000
chunks = pd.read_excel('test_data.xlsx', chunksize=chunk_size)

# 对每个数据块进行处理
processed_data = []
for i, chunk in enumerate(chunks):
    这里代码是对每个数据块进行处理......


读取Excel能用pandas尽量用pandas,但如果Excel文件非常大,已经远大于内存容量了,或者你相对Excel有更多其他处理,比如修改格式等,则可以用OpenPyXL。

它有专门的流式读取方式(只读模式read-only mode)来处理Excel,底层原理是OpenPyXL不会加载整个Excel文件到内存,而是保存为一个逻辑对象,在用的时候才流式去读取它。

from openpyxl import load_workbook

# 使用只读模式读取大型Excel文件
read_wb = load_workbook('large_data.xlsx', read_only=True)
read_ws = read_wb.active

# 以流式方式逐行读取、处理和写入
row_count = 0
for row in read_ws.iter_rows(min_row=2): 
    这里代码是对每一行进行处理......

OpenPyXL也可以流式写入Excel,原理同读取一样,采用write_only模式。


另外一个可以大规模写入数据,不占用内存的是库是XlsxWriter,它有个“常量内存”模式,支持每写入一行,就在内存中清除上一行占用的空间,意味着内存只存有一行数据,永远是够用的。

import xlsxwriter

# 创建一个文件名,用于写入数据
file_name = 'large_data_constant_memory.xlsx'

# 创建一个工作簿对象,并启用常量内存模式
workbook = xlsxwriter.Workbook(file_name, {'constant_memory': True})
worksheet = workbook.add_worksheet()
这里可以写入大量数据,不会占用内存......

除了以上几个库,还有像Dask、Polars、Modin、Rapids等库可以处理Excel大数据集,都是类似pandas的操作模式,但速度会快很多,可以试试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Python大数据分析

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值