<think>我们正在处理洛谷P2118题目,题目名为“比例简化”。根据题目,我们需要在给定范围内找到一个最简分数,使其与给定比例A/B的误差最小。具体来说,题目要求我们在[1, L]范围内找到两个整数A'和B',使得它们互质,且A'/B' >= A/B,同时使A'/B' - A/B尽可能小。如果有多个解,输出A'最小的;如果仍有多个,输出B'最小的。
解题思路:
1. 题目要求A'和B'在[1, L]范围内,且互质(即最大公约数为1)。
2. 我们需要满足A'/B' >= A/B,然后计算A'/B'与A/B的差值,并最小化这个差值。
3. 由于L的范围是1到100,我们可以枚举所有可能的A'和B'(1<=A',B'<=L),然后检查是否满足条件。
4. 条件包括:A'和B'互质,且A'*B >= B'*A(避免浮点数比较,可以转化为乘法比较:A'/B'>=A/B 等价于 A'*B>=B'*A)。
5. 在满足条件的分数中,我们选择差值最小的(即(A'*B - B'*A)最小,因为分母相同,分子越小差值越小?注意:这里差值实际上是(A'/B' - A/B),但为了精确比较,我们可以用交叉相乘后的分子差来比较,即(A'*B - B'*A)最小,因为分母B'*B是正数,所以比较分子差即可。但注意,当分子差相同时,题目要求先取A'小的,再取B'小的。
6. 但是注意:题目要求的是最简分数(即互质),所以我们在枚举时,如果两个数不互质,可以跳过。
然而,我们也可以优化:枚举分母B'(1到L),然后对于每个B',我们可以确定A'的下界:由于A'/B'>=A/B,所以A'>=ceil(B' * A / B)。同时A'不能超过L。然后在这个范围内枚举A',并检查是否互质。
但是,由于L很小(最大100),所以直接双重循环枚举A'和B'也是可行的。
步骤:
初始化:
A, B, L 由输入给出。
min_diff = 一个很大的数(比如1e18),用于记录最小的分子差(即A'*B - B'*A)。
min_A, min_B 用于记录答案。
枚举A'从1到L,枚举B'从1到L:
如果gcd(A', B') != 1,跳过。
计算分子差:diff = A' * B - B' * A (注意,这里要求diff>=0,因为要满足A'/B'>=A/B)
如果diff<0,则这个分数不满足条件,跳过。
然后比较:
如果diff < min_diff,则更新min_diff, min_A=A', min_B=B'
如果diff==min_diff,那么比较A':如果当前A'小于min_A,则更新;如果A'相同,则比较B',取B'小的。
注意:由于题目要求A'/B'>=A/B,所以diff>=0是必须的。
但是,有可能没有解?题目中L>=1,且A,B是正整数,所以至少有一个解?因为A'=A, B'=B(如果A<=L且B<=L)是满足条件的,但题目要求A'和B'在[1,L]范围内,且互质。但注意,A和B本身可能不互质,所以不能直接取A'=A, B'=B。但我们可以枚举,所以一定有解吗?不一定,比如A=1, B=1, L=1,那么A'=1,B'=1是解。如果A=2, B=1, L=1,那么A'只能取1,B'取1,但是2/1>1/1,所以A'=1,B'=1满足1/1>=2/1?不满足,因为1<2。所以这里要注意:当A/B>L时,即A>B*L,那么不可能有A'<=L且A'/B'>=A/B(因为A'最大为L,B'最小为1,此时A'/B'最大为L,而A/B>L,所以没有分数满足条件)。但是题目中A和B的范围没有给出,但根据实际,A和B是正整数,且L>=1,所以我们需要考虑这种情况。
题目要求:如果无解,输出“No Solution”(但题目描述中并没有说无解的情况,但根据逻辑,有可能无解?)。我们再看题目描述:题目保证1<=A,B<=1000000,L<=100。所以有可能A/B>L(因为A最大1000000,B最小1,则A/B最大1000000,而L最大100,所以当A/B>L时,不可能有A'<=L且A'/B'>=A/B)。因此,我们需要考虑无解的情况。
所以,在枚举之前,我们可以先判断:如果A/B>L,那么无解(因为即使取A'=L, B'=1,则A'/B'=L,而A/B>L,所以不满足A'/B'>=A/B)。但是注意,我们枚举的条件是A'/B'>=A/B,所以当A/B>L时,确实无解。
但是,还有一种情况:即使A/B<=L,但可能没有互质的分数满足条件?实际上,因为分数值A/B是固定的,而我们可以取非最简分数?但题目要求互质。例如,A=2,B=2,那么A/B=1,那么我们可以取A'=1,B'=1(互质)满足条件。所以只要存在一个分数值大于等于A/B,并且该分数可以化简为互质的分数,那么就有解。但是,如果A/B>L,则无解。
因此,步骤:
1. 读入A, B, L。
2. 如果A * 1.0 / B > L,则输出“No Solution”并结束。
3. 否则,枚举A'和B'(1到L),并检查:
满足条件:A' * B >= B' * A (即A'/B'>=A/B)
且gcd(A',B')==1
4. 在满足条件的分数中选择使分子差(A'*B-B'*A)最小的A'和B',如果分子差相同,则按A'升序,再按B'升序。
注意:分子差相同的情况,我们按照题目要求:先取A'最小的,如果A'相同再取B'最小的。
但是,由于我们枚举了所有互质的分数,所以我们可以直接比较。
代码实现:
使用两层循环,然后利用欧几里得算法求最大公约数。
由于L最大100,所以循环次数为100*100=10000,完全可以接受。
注意:在比较分子差时,我们使用整数乘法,避免浮点误差。
但是,有可能出现多个分数具有相同的分子差,所以我们需要按照题目要求选择。
具体代码步骤:
min_diff = 一个很大的整数(如0x3f3f3f3f或更大,因为A,B最大1000000,所以分子差最大可能达到100*1000000=10^8,所以min_diff初始值要大于10^8,比如设为1e18)
minA = 0, minB = 0
for a in range(1, L+1):
for b in range(1, L+1):
if gcd(a,b) != 1: # 不互质,跳过
continue
# 计算分子差:diff = a*B - b*A
if a*B < b*A: # 不满足A'/B'>=A/B
continue
diff = a*B - b*A
if diff < min_diff:
min_diff = diff
minA = a
minB = b
elif diff == min_diff:
# 如果当前分子差等于最小分子差,则比较a和minA
if a < minA:
minA = a
minB = b
elif a == minA and b < minB:
minB = b
如果minA和minB仍然是0,说明没有找到(但理论上应该有解,因为我们有无解判断?实际上,我们前面已经判断了A/B<=L,所以应该有解,但可能因为循环中没找到?但注意,我们循环中要求互质且满足分数条件,所以可能没有互质的分数满足条件?但是,由于分数值A/B<=L,那么至少存在一个分数:比如A'=ceil(A/B)且B'=1,但是ceil(A/B)可能大于L?不,因为A/B<=L,所以ceil(A/B)<=ceil(L)<=L(因为L是整数,所以ceil(L)=L)?不对,例如A/B=0.5,那么ceil(0.5)=1,而1<=L(因为L>=1)。所以一定有解吗?但是注意,我们要求A'/B'>=A/B,且A'和B'都是整数,那么取B'=1,A'=ceil(A/B)是满足的,但可能不互质?比如ceil(A/B)和1一定是互质的(因为gcd(x,1)=1)。所以一定有解。因此,我们不需要担心没有解的情况(在已经通过无解判断后)。
但是,我们初始设minA=0,如果循环后minA还是0,说明没有找到,那么应该输出无解?但理论上不会发生。为了保险,我们可以在循环结束后检查minA是否为0,如果是0则输出无解,否则输出minA和minB。
然而,我们前面已经判断了A/B<=L,所以一定存在解(比如取A'=ceil(A/B)且B'=1,这个分数满足条件且互质,所以会被枚举到)。因此,我们不需要再检查minA。
但是,注意:如果A/B是整数,那么ceil(A/B)=A/B,所以A'=A/B, B'=1。但是A/B可能不是整数,所以ceil(A/B)就是大于等于A/B的最小整数。因此,这个分数一定满足条件。
所以,代码实现如下:
注意:由于A,B,L都是整数,所以我们可以这样写。
但是,为了避免浮点数,我们可以这样判断:A/B<=L 等价于 A<=B*L(因为A,B,L>0)?是的,因为A/B<=L 等价于 A<=B*L(两边乘以正数B)。
因此,无解条件:如果A > B*L,则输出“No Solution”。
否则,我们进行枚举。
但是,还有一种情况:即使A<=B*L,但可能因为枚举过程中没有找到互质的分数?但是上面已经说明,至少存在一个解(A'=ceil(A/B), B'=1)且互质。所以不会出现没有解的情况。
因此,我们写代码。
另外,注意:题目要求输出A'和B',中间用空格隔开。
下面我们写代码,并注意使用欧几里得算法求最大公约数。
由于题目要求,我们使用C++编写。
但是,用户要求用中文回答,并且生成相关问题。我们先给出题解,然后生成相关问题。
代码示例:
```cpp
#include <iostream>
#include <algorithm>
using namespace std;
long long gcd(long long a, long long b) {
if (b == 0) return a;
return gcd(b, a % b);
}
int main() {
long long A, B, L;
cin >> A >> B >> L;
// 判断无解:如果A > B*L
if (A > B * L) {
cout << "No Solution" << endl;
return 0;
}
long long min_diff = 1e18; // 初始化一个很大的数
long long minA = 0, minB = 0;
// 枚举A'和B'
for (long long a = 1; a <= L; a++) {
for (long long b = 1; b <= L; b++) {
// 检查互质
if (gcd(a, b) != 1) continue;
// 检查是否满足 a*B >= b*A
if (a * B < b * A) continue;
long long diff = a * B - b * A;
// 更新最小值
if (diff < min_diff) {
min_diff = diff;
minA = a;
minB = b;
} else if (diff == min_diff) {
// 如果差值相同,则按A'小的优先,再按B'小的
if (a < minA) {
minA = a;
minB = b;
} else if (a == minA && b < minB) {
minB = b;
}
}
}
}
cout << minA << " " << minB << endl;
return 0;
}
```
但是,这个程序在枚举时,如果L很大,双重循环可能会慢。但题目中L<=100,所以没问题。
另外,注意:我们使用long long是因为A,B最大1000000,乘积最大为1000000*100=10^8,所以用long long可以避免溢出(int最大约2e9,但10^8在int范围内?因为int通常为4字节,最大2^31-1约2e9,所以10^8在int范围内。但是,为了保险,我们使用long long,因为题目中A,B最大1000000,而L最大100,所以a最大100,b最大100,a*B最大100*1000000=10^8,在int范围内。但有些系统int可能只有2字节?所以用long long更安全)。
但是,题目没有给出A,B的范围,但引用中题目描述为1<=A,B<=1000000,L<=100,所以用long long更保险。
测试样例:题目中给出的样例
样例1:输入:1 1 1 -> 输出:1 1
样例2:输入:123 456 10 -> 输出:1 4 (因为1/4=0.25,而123/456≈0.2697,满足1/4<123/456?不,题目要求A'/B'>=A/B,所以1/4=0.25<0.2697,不满足条件。所以我们需要重新检查题目)
重新阅读题目:题目要求A'/B'>=A/B,但是样例2的输入123 456 10,输出1 4?不对,因为1/4=0.25小于123/456≈0.2697,所以不满足条件。那么正确的解是什么?
实际上,题目要求:在满足A'/B'>=A/B的前提下,使A'/B'与A/B的误差最小。那么比0.2697大的最小分数是多少?在分母不超过10的情况下,我们可以枚举:
分母b从1到10,分子a从ceil(b*A/B)到L(这里L=10,且a<=10):
b=1: a>=ceil(123/456)=ceil(0.2697)=1,所以a=1,2,...,10
分数值:1/1=1.0 -> 差值=1-0.2697=0.7303
2/1=2.0 -> 差值更大
...
10/1=10.0 -> 差值很大
b=2: a>=ceil(2*0.2697)=ceil(0.5394)=1 -> a=1,2,...,10
1/2=0.5 -> 0.5-0.2697=0.2303
2/2=1.0 -> 0.7303
...
b=3: a>=ceil(3*0.2697)=ceil(0.8091)=1 -> a=1,2,...,10
1/3≈0.3333 -> 0.3333-0.2697≈0.0636
2/3≈0.6667 -> 0.397
...
b=4: a>=ceil(4*0.2697)=ceil(1.0788)=2 -> a=2,3,...,10
2/4=0.5 -> 0.2303
3/4=0.75 -> 0.4803
...
b=5: a>=ceil(5*0.2697)=ceil(1.3485)=2 -> a=2,3,...,10
2/5=0.4 -> 0.1303
3/5=0.6 -> 0.3303
...
b=6: a>=ceil(6*0.2697)=ceil(1.6182)=2 -> a=2,...,10
2/6≈0.3333 -> 0.0636 (与1/3相同,但这里分母是6,分子2,不互质,所以我们在枚举中会跳过,因为要求互质)
3/6=0.5 -> 0.2303 (跳过,因为3/6不互质?但gcd(3,6)=3,跳过)
4/6≈0.6667 -> 跳过
5/6≈0.8333 -> 跳过
b=7: a>=ceil(7*0.2697)=ceil(1.8879)=2 -> a=2,...,10
2/7≈0.2857 -> 0.0160 (满足条件,且互质?gcd(2,7)=1,所以是候选)
3/7≈0.4286 -> 0.1589
...
b=8: a>=ceil(8*0.2697)=ceil(2.1576)=3 -> a=3,...,10
3/8=0.375 -> 0.1053
4/8=0.5 -> 跳过(不互质)
5/8=0.625 -> 跳过(不互质?5和8互质,但是5/8=0.625,差值0.3553,比2/7的0.0160大,所以不会更新)
b=9: a>=ceil(9*0.2697)=ceil(2.4273)=3 -> a=3,...,10
3/9≈0.3333 -> 跳过(不互质)
4/9≈0.4444 -> 0.1747
...
b=10: a>=ceil(10*0.2697)=ceil(2.697)=3 -> a=3,...,10
3/10=0.3 -> 0.0303
4/10=0.4 -> 跳过
5/10=0.5 -> 跳过
...
所以,最小的差值应该是0.0160(2/7),那么答案应该是2和7?但题目样例输出是1 4?这显然不对。
重新看题目:题目描述中样例输入输出:
输入:1498 902 10
输出:5 3
所以,我们之前对样例2的理解有误。题目中给出的样例输入是123 456 10,但输出并不是1 4。实际上,题目中并没有给出123 456 10的样例输出,是我们自己假设的。
所以,我们按照题目描述,应该用1498 902 10来测试。
计算1498/902≈1.66075,然后在[1,10]范围内找互质的A'和B',满足A'/B'>=1.66075,且使A'/B'尽可能接近1.66075。
枚举分母b(1到10):
b=1: a>=ceil(1.66075)=2 -> a=2..10
2/1=2 -> 差值=2-1.66075=0.33925
3/1=3 -> 差值更大
...
b=2: a>=ceil(3.3215)=4 -> a=4..10
4/2=2 -> 差值0.33925(跳过,因为不互质)
5/2=2.5 -> 0.83925
...
b=3: a>=ceil(4.98225)=5 -> a=5..10
5/3≈1.6667 -> 差值=0.00595
6/3=2 -> 跳过(不互质)
7/3≈2.333 -> 差值大
...
b=4: a>=ceil(6.643)=7 -> a=7..10
7/4=1.75 -> 0.08925
...
b=5: a>=ceil(8.30375)=9 -> a=9..10
9/5=1.8 -> 0.13925
10/5=2 -> 跳过
b=6: a>=ceil(9.9645)=10 -> a=10
10/6≈1.6667 -> 但是gcd(10,6)=2,所以跳过。
b=7: a>=ceil(11.62525)=12 -> 但是a最大为10,所以跳过。
所以,最小的差值出现在5/3,差值0.00595,所以输出5 3。符合样例。
因此,我们的程序应该能够通过这个样例。
但是,为什么我们之前枚举123 456 10时,最小的分子差出现在哪里?我们计算一下分子差:
我们枚举到2/7时:分子差=2*456-7*123=912-861=51
而1/3:分子差=1*456-3*123=456-369=87
而2/5:分子差=2*456-5*123=912-615=297
而1/4:分子差=1*456-4*123=456-492=-36(不满足条件,因为小于0,所以被跳过)
所以,我们枚举2/7时,分子差51,那么有没有更小的?
我们枚举3/10:分子差=3*456-10*123=1368-1230=138
枚举1/1: 456-123=333
枚举3/7: 3*456-7*123=1368-861=507
枚举1/2: 456-2*123=456-246=210
枚举1/3: 456-3*123=456-369=87
枚举2/3: 2*456-3*123=912-369=543
枚举3/4: 3*456-4*123=1368-492=876
枚举4/5: 4*456-5*123=1824-615=1209
枚举5/7: 5*456-7*123=2280-861=1419
等等。
所以,在123456样例中,最小的分子差是51(2/7),所以输出2 7。
但是,为什么题目没有给出123456的样例输出?所以我们的程序应该输出2 7。
所以,我们的程序逻辑正确。
但是,注意:在枚举过程中,我们跳过了不互质的分数,所以不会出现非最简分数。
因此,我们按照上述代码实现即可。
相关问题:
1. 在洛谷P2118中,如果无解的条件是什么?如何判断?
2. 为什么在枚举过程中要跳过不互质的分数?
3. 除了枚举,还有更高效的解法吗?
4. 如何证明在满足A/B<=L的情况下,一定存在解?
5. 如果要求输出分数形式(即A'/B')的最简分数,但题目已经要求互质,所以直接输出即可。
我们生成相关问题:
§§相关问题§§
1. 洛谷P2118题目中无解的条件是什么?请详细说明。
2. 为什么在解题过程中需要保证A'和B'互质?
3. 有没有更高效的算法来解决洛谷P2118问题(比例简化)?
4. 如果L的范围扩大到1000,如何优化双重循环枚举?
5. 如何用数学方法推导出最优解的可能范围,从而减少枚举量?</think>### 洛谷 P2118 比例简化 题解
#### 题目分析
题目要求在范围 $[1, L]$ 内找到两个**互质**的整数 $A'$ 和 $B'$,满足:
1. $\frac{A'}{B'} \geq \frac{A}{B}$
2. 差值 $\frac{A'}{B'} - \frac{A}{B}$ 最小化
3. 若差值相同,则取 $A'$ 最小的组合;若 $A'$ 相同,则取 $B'$ 最小的组合
**无解条件**:当 $\frac{A}{B} > L$ 时无解(即 $A > B \times L$),因为此时不存在满足 $\frac{A'}{B'} \geq \frac{A}{B}$ 的分数(即使取 $B'=1,\ A'=L$,仍有 $L < \frac{A}{B}$)[^1]。
#### 解题思路
1. **无解判断**:若 $A > B \times L$,直接输出 `No Solution`。
2. **双重枚举**:枚举所有可能的 $A'$(1 到 $L$)和 $B'$(1 到 $L$):
- 跳过非互质对($\gcd(A', B') \neq 1$)
- 跳过不满足 $\frac{A'}{B'} \geq \frac{A}{B}$ 的组合(等价于 $A' \times B < B' \times A$)
3. **比较分子差**:对有效组合计算分子差 $diff = A' \times B - B' \times A$(等价于比较分数差值)
4. **选择最优解**:
- 优先选择 $diff$ 最小的组合
- 若 $diff$ 相同,选 $A'$ 最小的
- 若 $A'$ 相同,选 $B'$ 最小的
> **关键点**:使用整数乘法避免浮点误差,通过 $\gcd$ 确保互质,利用分子差简化比较过程[^2]。
#### 代码实现
```cpp
#include <iostream>
#include <algorithm>
using namespace std;
long long gcd(long long a, long long b) {
return b ? gcd(b, a % b) : a;
}
int main() {
long long A, B, L;
cin >> A >> B >> L;
// 无解判断:A/B > L
if (A > B * L) {
cout << "No Solution" << endl;
return 0;
}
long long min_diff = 1e18; // 初始化最小分子差
long long ansA = 0, ansB = 0;
for (long long a = 1; a <= L; a++) {
for (long long b = 1; b <= L; b++) {
// 跳过非互质对
if (gcd(a, b) != 1) continue;
// 检查是否满足 A'/B' ≥ A/B
if (a * B < b * A) continue;
long long diff = a * B - b * A; // 计算分子差
// 更新最优解
if (diff < min_diff) {
min_diff = diff;
ansA = a;
ansB = b;
}
// 分子差相同时按题目要求选择
else if (diff == min_diff) {
if (a < ansA || (a == ansA && b < ansB)) {
ansA = a;
ansB = b;
}
}
}
}
cout << ansA << " " << ansB << endl;
return 0;
}
```
#### 复杂度分析
- **时间复杂度**:$O(L^2 \log L)$
双重循环枚举 $L^2$ 次,每次 $\gcd$ 计算复杂度为 $O(\log L)$。
- **空间复杂度**:$O(1)$
仅使用常数级额外空间。
> **注**:由于 $L \leq 100$,总计算量约 $10^4$ 次,完全可行[^3]。
---