预训练模型 FastText 读取词向量

本文详细介绍了如何使用Python和NumPy加载预训练的FastText模型,以进行词向量的获取和自然语言处理任务。通过理解FastText模型的内部机制,读者将能够有效地利用这些词向量进行机器学习和语言模型的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  、‘

、、

、、

、、、

from gensim.models import FastText
from gensim.models import KeyedVectors
import pandas as pd
data=pd.read_excel("level_2_table(1).xlsx")
data_neirong=data['内容'].values
data_1_aspect=data['1_aspect'].values
print(data_1_aspect)
FASTTEXTFILE = "wiki-news-300d-1M.vec"
ft_model = KeyedVectors.load_word2vec_format(FASTTEXTFILE)
with open ("1_aspect_vec.txt","a+",encoding="utf-8") as f:
        for word in data_1_aspect:
                temp_vec=ft_model.get_vector(str(word))
                print(temp_vec)
                f.write(str(word) + " ")
                for i in temp_vec:
                        f.write(str(i)+" ")
                f.write("\n")
f.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值