2023年9月上旬大模型新动向集锦

Meta开源DINOv2模型,提升计算机视觉性能;OpenAI与微软强化企业级AI隐私保护;Google推出AlloyDBAI服务支持生成式AI应用;腾讯发布大模型混元;联合国发布教育使用生成式AI的指导原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023年9月上旬大模型新动向集锦

  • 2023.9.11
  • 版权声明:本文为博主chszs的原创文章,未经博主允许不得转载。

1、Meta 开源计算机视觉基础模型DINOv2

Meta 以 Apache 2.0许可证发布计算机视觉模型 DINOv2,为开发人员和研究人员提供下游任务的更大灵活性。Meta 还发布了一系列基于 DINOv2的密集预测模型,用于语义图像分割和单目深度估计。

DINOv2核心特色功能包括:

  • 基于PyTorch实现的DINOv2自监督学习方法的代码和预训练模型
  • 不需要任何标签或注释即可在包含1.42亿张图像的数据集上进行预训练
  • 产生高性能的视觉特征,可以直接与简单的线性层组合在各种计算机视觉任务上使用
  • 预训练模型效果强劲,在不进行微调的情况下也能跨域泛化
  • 提供多个预训练模型 BACKBONE(ViT-S/14、ViT-B/14等)可通过PyTorch Hub加载
  • 提供了对应预训练任务头,如图像分类、深度估计、语义分割等
  • DINOv2项目网址:https://github.com/facebookresearch/dinov2

2、大模型平台加强企业级安全和隐私保护

大模型商业领域,目前有两家公司率先开始加强企业级安全和隐私保护。

首先是OpenAI,OpenAI前不久发布了企业级的ChatGPT,同时提供企业级的安全及隐私保护:

  • 所有权:拥有并控制自己的业务数据
    • OpenAI承诺不会使用企业的业务数据以及根据其使用情况对AI进行训练和学习;
    • 在法律允许的情况下,企业可以自由地输入和输出所需内容;
    • 企业能够选择和设定模型中的数据保留时间。
  • 控制:由企业决定谁有权访问
    • 企业版ChatGPT能够通过SAML SSO进行企业级的身份验证。
    • 对访问和可用功能可以及逆行精细控制,企业可进行个性化的定制。
    • 企业拥有私人化的自定义模型使用权,模型不会与其他任何人共享。
  • 安全性:全面合规
    • 通过 CCPA、GDPR、SOC 2、SOC 3的合规性审核。
    • 在传输过程中(AES 256)和静止状态下(TLS 1.2+)对企业用户的所有对话进行加密。
  • 大规模部署
    • 企业版ChatGPT拥有专用管理控制台,能够让企业轻松地进行批量成员管理。
    • 提供域验证、SSO和使用情况的分析面板,可以让模型大规模部署到企业中。

其次是微软。在 Windows Copilot 预览版中引入 Bing Chat Enterprise。为符合条件的商业客户直接从 Windows Copilot 面板中访问 BingChat 企业版。与普通版的 BingChat 相比,企业版提供了更强的商业数据保护,聊天数据不会被保存,不会使用用户数据来训练基础模型。

国内各大公司的大模型基本上还未开展(或处于开展初期)企业级商业应用,故在企业级安全和隐私保护还未开始。

3、Google 推出 AlloyDB AI 服务

谷歌最近宣布推出 AlloyDB AI 服务。AlloyDB AI 是一套集成在 AlloyDB for PostgreSQL 中的功能。要知道,PostgreSQL 是一个开源的关系数据库系统;AlloyDB for PostgreSQL 则是在 PG 的基础上添加了向量存储功能;而 AlloyDB AI 则更进一步,在此基础上帮助开发人员更容易地构建生成式人工智能应用程序。

AlloyDB AI 的主要目的是帮助开发人员更容易地构建生成式人工智能应用程序。生成式人工智能是一种技术,可以让计算机通过学习数据分布生成全新的、真实的、有用的数据,例如文本、图像、音频和视频等。AlloyDB AI 使用简单的 SQL 函数将数据转换为向量嵌入,并且它可以执行向量查询,号称速度比 PostgreSQL 的标准查询快十倍。AlloyDB AI 让用户能够以简单的 PostgreSQL 函数对数据生成嵌入。

AlloyDB AI 通过 AlloyDB Omni 进行预览,这是一个用于数据分析和数据工程的平台,提供了一系列工具和功能,包括数据转换、数据可视化、机器学习等。AlloyDB Omni 现在提供了内置的向量嵌入支持。向量嵌入是一种将高维数据(如文本或图像)转换为低维向量(通常是二维或三维)的技术,这有助于更好地理解和处理高维数据。这个内置的向量嵌入支持为构建 AI 搜索应用程序奠定了基础。这意味着使用 AlloyDB AI 和 AlloyDB Omni,开发人员可以更容易地创建能够理解并处理大量数据的搜索应用程序,例如可以根据用户输入的文本生成相关结果的搜索引擎。此外,AlloyDB AI 还提供其他功能,以帮助开发人员构建更复杂的人工智能应用程序。这些功能包括用于处理数据的工具和算法,以及用于训练和评估模型的工具和框架。

4、OpenAI将举办首届开发者大会OpenAI DevDay

美国人工智能公司OpenAI在官网宣布,其将于2023年11月6日在旧金山举行公司的首届开发者大会“OpenAI DevDay”。为期一天的活动将邀请来自世界各地的数百名开发者与OpenAI团队一起预览新工具并交流想法。现场与会者还可以参加由OpenAI技术人员领导的分组会议。

5、腾讯发布大模型’混元’

2023年9月7日,在当日举行的腾讯全球数字生态大会上,腾讯发布大模型’混元’,宣称全自主研发,大模型’混元’拥有超千亿的参数规模、超 2 万亿 tokens 的预训练语料。该模型目前支持多轮对话、内容创作、逻辑推理、知识增强等功能,多模态文生图也将在后续上线。

在收费方面,腾讯混元大模型将为每个在白名单中的已实名腾讯云企业账号提供累计 10 万 token 的免费调用额度,开通服务后即可使用。在免费额度用完后,按如下价格进行计费:腾讯混元大模型高级版每 1000 token 收费 0.14 元。

尽管腾讯已经宣布大模型’混元’正式开放,但要找到它的官网很难,网上搜不到。呵呵,过几天再看。补充:11号再搜,找到了,它集成到腾讯云服务里了,见https://cloud.tencent.com/document/product/1729

6、联合国教科文组织发布《教育和研究中使用生成式AI指南》

2023年9月7日,联合国教科文组织颁布了《教育和研究中使用生成式AI指南》。这是全球首份生成式AI相关的指南性文件,旨在促使生成式AI能够更好地融入到教育。据介绍,《指南》的前几节解释了生成式AI及其工作原理,随后阐述了围绕生成式AI的争议及其对教育的影响,特别提到了它将如何加剧数字鸿沟。《指南》将帮助政策制定者和教师从学习者的首要利益出发,以最佳方式发掘生成式AI的潜力。《指南》还列出了各国政府应当采取的几个关键步骤,包括开展相关的教师培训、将在课堂上使用AI工具的年龄限制为13岁。

注:想看《指南》的可私信我。

<think>嗯,用户想在GEE里用Landsat-8数据生成广西崇左大新县2023甘蔗的NDVI时间序列曲线。首先,我需要回顾一下NDVI的计算方法和GEE的相关操作。根据引用[4],NDVI是通过近红外和红光波段的归一化差异计算的,Landsat-8的B5和B4对应这两个波段。所以代码里应该用`normalizedDifference(["B5", "B4"])`来算。 接下来,确定研究区域。用户提到的是广西崇左大新县,需要获取该区域的边界。可能用GEE的`ee.FeatureCollection`来导入行政区划数据,比如使用FAO的GAUL数据集或者用户上传的Shapefile。引用[1]里用了点坐标加缓冲区,但这里可能需要精确的县域范围,所以最好用矢量边界。 然后,时间范围是2023,所以开始日期设为'2023-01-01',结束日期设为'2023-12-31'。需要筛选Landsat-8的影像集合,应用区域和时间过滤。还要考虑云量影响,可能需要用`ee.Algorithms.Landsat.simpleComposite`或者云掩膜处理,比如用QA波段去云,如引用[4]中的示例可能没处理云,但实际应用中这一步很重要。 甘蔗的NDVI曲线需要时间序列数据点,所以可能需要按月份或周来合成影像,计算平均NDVI。引用[1]中的方法可以借鉴,使用`map`函数遍历每个月,生成月度合成影像,并计算区域内的平均NDVI。然后导出数据或生成图表。 另外,用户可能需要区分甘蔗和其他植被,但如果没有分类数据,可能只能假设区域内主要作物是甘蔗,或者需要结合种植区域矢量数据。如果有甘蔗的种植区域矢量,可以裁剪NDVI影像到该区域,再计算平均。 代码结构大概包括:定义区域、加载Landsat-8数据、去云、计算NDVI、时间序列聚合、可视化。可能需要使用`ui.Chart.image.series`来生成图表,或者用`reduceRegion`按月统计均值。 需要注意Landsat-8的数据集名称是否正确,比如'LANDSAT/LC08/C01/T1_SR'或T2,确保使用地表反射率数据,而不是TOA,因为TOA可能受大气影响更大。引用[4]用了TOA数据,但SR更准确。此外,检查是否有数据覆盖,特别是云覆盖情况,可能需要更高的云量过滤阈值。 最后,生成图表后导出或直接在GEE中显示。可能还需要添加图例、调整颜色等可视化参数,如引用[4]中的调色板设置。需要确保代码正确,并指导用户如何调整参数,比如区域、时间、云掩膜阈值等。</think>以下是基于Google Earth Engine平台使用Landsat-8数据生成广西崇左大新县2023甘蔗NDVI时间序列曲线的分步解决方案: ### 一、技术路线 1. **数据选择**:采用Landsat-8地表反射率数据(`LANDSAT/LC08/C02/T1_L2`),确保大气校正精度[^2] 2. **NDVI计算**:使用公式 $$ NDVI = \frac{B5 - B4}{B5 + B4} $$ 其中B5为近红外波段,B4为红光波段[^4] 3. **时间序列构建**:以月为时间单元进行影像合成 4. **空间筛选**:通过甘蔗种植区域矢量边界进行空间裁剪 ### 二、完整代码实现 ```javascript // 定义研究区域 var daxin = ee.FeatureCollection("users/your_account/Daxin_Sugarcane"); // 需上传县域甘蔗种植矢量边界 // 定义时间范围 var startDate = '2023-01-01'; var endDate = '2023-12-31'; // 加载Landsat-8数据 var l8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterBounds(daxin) .filterDate(startDate, endDate) .map(function(image) { // 云掩膜处理 var qa = image.select('QA_PIXEL'); var cloudBitMask = 1 << 3; var mask = qa.bitwiseAnd(cloudBitMask).eq(0); return image.updateMask(mask); }); // 定义NDVI计算函数 var addNDVI = function(image) { var ndvi = image.normalizedDifference(['SR_B5','SR_B4']).rename('NDVI'); return image.addBands(ndvi); }; // 时间序列合成 var monthlyNDVI = ee.ImageCollection(l8.map(addNDVI)) .select('NDVI') .filterBounds(daxin) .map(function(image) { return image.clip(daxin); }); // 生成时间序列曲线 var chart = ui.Chart.image.series({ imageCollection: monthlyNDVI, region: daxin, reducer: ee.Reducer.mean(), scale: 30, xProperty: 'system:time_start' }).setOptions({ title: '2023大新县甘蔗NDVI时间序列', vAxis: {title: 'NDVI'}, hAxis: {title: '日期', format: 'YYYY-MM'}, lineWidth: 2, colors: ['#2ca02c'] }); print(chart); ``` ### 三、关键步骤说明 1. **数据预处理**: - 使用`QA_PIXEL`波段进行云掩膜处理,确保数据质量[^2] - 通过`.clip()`方法将影像裁剪至甘蔗种植区域 - 采用`normalizedDifference()`方法计算NDVI[^4] 2. **时间序列构建**: - 默认以所有可用影像生成原始序列 - 可通过`.map()`添加月度/旬合成逻辑: ```javascript .map(function(img){ return img.set('month', img.date().get('month')); }) .median().float(); // 月合成中值 ``` 3. **可视化优化**: - 调整`setOptions`参数可修改图表样式 - 添加趋势线分析: ```javascript .setOptions({ trendlines: {0: {type: 'linear', color: 'red'}} }) ``` ### 四、注意事项 1. 矢量边界需精确到甘蔗种植地块,可通过实地调研或农业部门获取 2. 缺失月份数据可通过线性插值补全 3. Landsat-8重访周期为16天,云覆盖较高时可融合Sentinel-2数据[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值