极大似然估计求解多项式分布参数

本文详细介绍了如何利用极大似然估计方法求解多项式分布的参数问题,并通过数学推导给出了具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文作者:合肥工业大学 管理学院 钱洋 email:1563178220@qq.com 内容可能有不到之处,欢迎交流。

未经本人允许禁止转载
#原因
今天晚上,老师在看LDA数学八卦的时候,问我一个问题,如下图所示:

这里写图片描述

这个多项式分布的参数,采用极大估计是怎么求的呢?当时想了想还真不知道,于是在网上找了资料,学习了一下,特此记录。

#公式推导
很多情况下,假定一个变量XXXkkk个状态,其中k>2k>2k>2,每个状态假定的可能性为p1,p2,⋯ ,pkp_{1},p_{2},\cdots ,p_{k}p1,p2,,pk,且∑i=1kpi=1\sum _{i=1}^{k}p_{i}=1i=1kpi=1,独立进行nnn次实验,用n1,n2,⋯ ,nkn_{1},n_{2},\cdots ,n_{k}n1,n2,,nk表示每个状态发生的次数,发生的次数服从多项式分布:
p(n1,n2,⋯ ,nk∣p1,p2,⋯ ,pk)=n!∏i=1kni!∏i=1kpinip\left ( n_{1},n_{2},\cdots ,n_{k}|p_{1},p_{2},\cdots ,p_{k} \right )=\frac{n!}{\prod _{i=1}^{k}n_{i}!}\prod _{i=1}^{k}p_{i}^{n_{i}}p(n1,n2,,nkp1,p2,,pk)=i=1kni!n!i=1kpini

下面采用极大似然求解:

L(p1,p2,⋯ ,pk)=log(n!∏i=1kni!∏i=1kpini)L\left ( p_{1},p_{2},\cdots ,p_{k} \right )=log\left (\frac{n!}{\prod _{i=1}^{k}n_{i}!}\prod _{i=1}^{k}p_{i}^{n_{i}} \right )L(p1,p2,,pk)=log(i=1kni!n!i=1kpini)
=log(n!)−∑i=1klognk!+∑i=1klogpk=log\left ( n! \right )-\sum _{i=1}^{k}logn_{k}!+\sum _{i=1}^{k}logp_{k}=log(n!)i=1klognk!+i=1klogpk

对于有约束条件的极值求解问题可使用拉格朗日乘法:
Lagrange(p1,p2,⋯ ,pk,λ)=L(p1,p2,⋯ ,pk)−λ(∑i=1kpi−1) Lagrange\left ( p_{1},p_{2},\cdots ,p_{k},\lambda \right )=L\left ( p_{1},p_{2},\cdots ,p_{k} \right )-\lambda\left ( \sum _{i=1}^{k}p_{i}-1 \right ) Lagrange(p1,p2,,pk,λ)=L(p1,p2,,pk)λ(i=1kpi1)

求导(计算梯度):
∂Lagrange(p1,p2,⋯ ,pk,λ)∂pi=nipi−λ\frac{\partial Lagrange\left ( p_{1},p_{2},\cdots ,p_{k},\lambda \right )}{\partial p_{i}}=\frac{n_{i}}{p_{i} }-\lambdapiLagrange(p1,p2,,pk,λ)=piniλ

进而有:
pi=niλp_{i}=\frac{n_{i}}{\lambda }pi=λni

由于
∑i=1kniλ=1\sum _{i=1}^{k}\frac{n_{i}}{\lambda }=1i=1kλni=1

得到:
λ=n\lambda=nλ=n

进而有:
pi^=nin\hat{p_{i}}=\frac{n_{i}}{n}pi^=nni

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值