变分推断以及在概率图模型中的应用

本文探讨了变分推断在机器学习中的应用,特别是其在LDA和Supervised Topic Models中的实现。介绍了变分推断作为Gibbs采样的替代方法,以及平均场理论如何将复杂多体问题转化为单体问题,为理解图模型中的变量交互提供了一种新视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

变分推断

以前都是搞Gibbs采样,最近找国外导师的时候发现有必要学习一下变分推理。

平均场理论

来源于物理学,是一种研究复杂多体问题的方法,将数量巨大的互相作用的多体问题转化成每一个粒子处在一种弱周期场中的单体问题。如果将其应用到图模型中,可以将相互作用的多体看成相互作用的变量:
在这里插入图片描述

变分贝叶斯推断

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

LDA的变分推断

Supervised topic models变分推断

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值