力扣 最大子序和

本文解析如何利用分治法解决给定整数数组中最大连续子数组和问题,通过实例演示和代码实现,掌握快速求解最大和的关键技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:

输入:nums = [1]
输出:1
示例 3:

输入:nums = [0]
输出:0
示例 4:

输入:nums = [-1]
输出:-1
示例 5:

输入:nums = [-100000]
输出:-100000

提示:

1 <= nums.length <= 3 * 104
-105 <= nums[i] <= 105

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

来源:力扣(LeetCode)

AC代码:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {//找到一个具有最大和的连续子数组,返回最大和 
		//样例:{-2,1,-3,4,-1,2,1,-5,4};
		int n=nums.size(),i;
		int ans=nums[0];
		for(i=0;i<n;i++)
		{
			ans=max(ans,nums[i]);
		}
		if(ans>=0)
		{
			int sum=0;
			for(i=0;i<n;i++)
			{
				if(sum+nums[i]<0)
					sum=0;
				else
					sum+=nums[i];
				ans=max(ans,sum);
			}
		}
		return ans;
    }
};
<think>好的,我需要帮助用户找到在LeetCode上实现“找到最大的长度为K的列”的C语言解法。用户提到了相关的引用,我需要结合这些信息来构建答案。 首先,用户提供的引用中,引用[2][4]提到了Python的解法,其中引用[2]的Python代码使用选择排的思路,每次选出最大的元素,记录其值原位置,最后按原顺输出。而引用[4]则提到堆解法,但可能用户更关注C语言的实现。 用户需要的是C语言的实现,所以我需要将Python的思路转化为C代码。Python代码中,每次循环k次,每次找到当前最大的元素,记录索引值,然后将该位置置为None以避免重复选择。最后按原始顺这些选中的元素。 在C语言中,由于没有内置的列表操作,需要手动处理数组。可能需要创建一个结构体数组来保存选中元素的值原索引。然后,对这些结构体按原索引排,最后提取值形成列。 需要注意的问题包括:如何标记已选中的元素,避免重复选择。Python中使用None,但在C中可以用一个辅助数组来记录是否已被选中,或者将原数组的值修改为一个极小值(如INT_MIN)来模拟“已选中”。 另外,引用[3]中的状态机可能不相关,但引用[4]提到的堆解法提示可能的优化,但用户需要的是C语言实现,可能更关注直接的实现方法,而非复杂数据结构。 步骤可能如下: 1. 创建一个结构体数组保存值原始索引。 2. 遍历原数组,找到前k个最大元素,并记录它们的值索引。 3. 按原始索引排这些选中的元素,以保持原数组中的相对顺。 4. 提取值组成结果数组。 在实现时,需要注意处理重复值的情况,以及如何高效地找到每次的最大值。由于数组长度可能到1000,k也可能到1000,直接每次遍历找最大值的时间复杂度是O(nk),对于n=1000来说是可以接受的。 现在需要将这些思路转化为C代码,并确保语法正确,比如结构体的定义、排函数的使用,以及内存的动态分配等。同时要处理可能的错误情况,比如内存分配失败。 最后,验证代码是否符合题目要求,比如返回列长度是否正确,元素顺是否保持原数组中的相对顺,以及是否最大。</think>### 分步解答 根据LeetCode问题要求,我们需要在C语言中实现一个算法,找到数组中最大的长度为$k$的列,同时保持这些元素在原数组中的相对顺。以下是具体的实现思路代码解析: --- ### **步骤1:理解问题特性** 列的元素在原数组中不需要连续,但必须保持原有顺。因此,**不能直接排数组取前k个最大元素**,因为这会破坏顺。正确的方法是: 1. **选择最大的k个元素**(根据值的大小) 2. **按原始顺排列这些元素** --- ### **步骤2:设计算法思路** 1. **记录元素值索引**:将每个元素的值与其原始索引绑定。 2. **选择前k个最大元素**:通过遍历或排选出最大的k个元素。 3. **按索引排**:将选中的元素按原始索引排,以保持原数组顺。 --- ### **步骤3:C语言实现代码** ```c #include <stdio.h> #include <stdlib.h> #include <limits.h> // 结构体保存值原始索引 typedef struct { int value; int index; } Element; // 比较函数:按值降 int compareByValue(const void* a, const void* b) { Element* e1 = (Element*)a; Element* e2 = (Element*)b; return e2->value - e1->value; } // 比较函数:按索引升 int compareByIndex(const void* a, const void* b) { Element* e1 = (Element*)a; Element* e2 = (Element*)b; return e1->index - e2->index; } int* maxSubsequence(int* nums, int numsSize, int k, int* returnSize) { // 创建元素数组并填充 Element* elements = malloc(numsSize * sizeof(Element)); for (int i = 0; i < numsSize; i++) { elements[i].value = nums[i]; elements[i].index = i; } // 按值降 qsort(elements, numsSize, sizeof(Element), compareByValue); // 取前k个元素 Element* selected = malloc(k * sizeof(Element)); for (int i = 0; i < k; i++) { selected[i] = elements[i]; } // 按索引升以恢复原始顺 qsort(selected, k, sizeof(Element), compareByIndex); // 提取结果 int* result = malloc(k * sizeof(int)); for (int i = 0; i < k; i++) { result[i] = selected[i].value; } *returnSize = k; free(elements); free(selected); return result; } ``` --- ### **步骤4:代码解析** 1. **结构体定义**:`Element`保存元素值原始索引。 2. **两次排**: - 第一次按值降,选出最大的$k$个元素[^2]。 - 第二次按索引升,恢复原数组顺。 3. **时间复杂度**:$O(n \log n)$(主要来自排),满足LeetCode约束条件[^4]。 --- ### **步骤5:测试案例** 输入:`nums = [3,1,2,5,4], k = 3` 输出:`[3,5,4]` 解释:最大和列为`3,5,4`,为$12$,且保持原顺。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

细水长流者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值