文章目录
概述
兜兜转转又回到YOLOv5,YOLOv5的项目代码太易用了,开箱即用,工具多,效果好,谁能不爱呢。我这里对我使用YOLOv5 做简单的记录,以后自己看到能很快用起来就是本篇文章的目的,这篇文章我一直要干到MNN部署方式去。
目标检测模型概述
深度学习模型由于其拥有足够的表达能力,能够很好表达从输入数据到输出数据的映射关系,被广泛应用于各类场景中。图1中展现了深度学习模型在文字、图像、语音中的应用场景,其中图像是我个人最熟悉的,也是日常业务中最常遇到的场景。

图像领域有四个主要任务:图像分类、目标检测、图像分割、实例分割。
在目标分割领域中,基本可以分为anchor based方法和anchor free方法,yolov5这个算法模型是anchor based方法,同时也是集大成者,包含目前目标检测领域中所有的比较有效的方法(FPN、PAN、SPP、CSP等),目前仍就是目标检测领域中最为优秀的算法之一。目前学术界的研究在目标检测领域主要分为两个方向,一是使用anchor free方法的模型(学术界普遍认为此种方法更加符合目标检测的原始动机,不带有那么高的监督性),二是使用 NLP领域的一些新模型(比如Transformer、多模态的一些研究)。
就目前学术研究情况(靠学术前沿论坛获知)和各大公司所采用模型情况来看,yolov5依旧是一个值得长期选择和持有的模型。
订阅专栏 解锁全文
8710

被折叠的 条评论
为什么被折叠?



