代码:https://github.com/zsyoaoa/resshift
论文:https://arxiv.org/abs/2307.12348
文章目录
论文
文章的摘要部分介绍了基于扩散的图像超分辨率(SR)方法主要受限于推理速度慢,因为需要数百甚至数千个采样步骤。现有的加速采样技术在一定程度上牺牲了性能,导致超分辨率结果过模糊。为了解决这个问题,作者提出了一种新颖高效的扩散模型用于SR,显著减少了扩散步骤的数量,从而消除了在推理过程中需要后加速的需求及其可能导致的性能恶化问题。
该方法构建了一个马尔可夫链,通过在高分辨率图像和低分辨率图像之间的残差移动来实现两者之间的转换,大幅提高了转换效率。此外,还开发了一个精细的噪声调度来灵活控制扩散过程中的移动速度和噪声强度。广泛的实验表明,所提出的方法即使仅使用15个采样步骤,也能在合成和真实世界数据集上获得与当前最先进方法相当或更优的性能。作者的代码和模型可在GitHub上获得。
引言
图像超分辨率(SR)是低层次视觉中的一个基本问题,其目标是从给定的低分辨率(LR)图像中恢复出高分辨率(HR)图像。由于现实世界场景中退化模型的复杂性和未知性,这个问题是极其不适定的。最近,扩散模型,作为一种新出现的生成模型,在图像生成方面取得了前所未有的成功。此外,它在解决多个下游低层次视觉任务方面也显示出巨大的潜力,