前言
当前网络上关于yolo安装和使用的说明普遍比较繁杂。本文结合Pycharm实现对最新的Yolov8和Yolov11模型的安装和使用。为了简化,没有采用cuda版本。因为从算力上来讲,Yolo属于中小模型,一般的图片,cpu的训练就可以快速完成了的。
本文关于安装的细节相对简略一些,可以配合我的另外一篇博客:Yolo_v8的安装测试(https://blog.csdn.net/quickrubber/article/details/146611155)对比阅读。
一、Yolo的发展历程
这个图其实后面还应加上2024年的YOLOv11,可以参考网上的这张图:
二、安装步骤
2.1、先建立Pycharm工程
采用的Python版本是3.11
2.2、下载
https://github.com/ultralytics/ultralytics.git
2.3、解压覆盖到Pycharm目录
2.4、安装ultralytics
注意,为何下载了ultralytics源码之后,还需要进行pip安装呢。因为,github上提供的只是一个代码的框架和示例程序。所以,为了得到完整的Yolo的功能,还是需要进行pip install ultralytics这个操作的。
运行如下的命令:
pip install ultralytics -i https://mirrors.aliyun.com/pypi/simple/
如图:
2.5、运行predict命令行实例
yolo task=detect mode=predict model=yolov8n.pt source='cars.jpg'
运行结果如下:
预测图:
说明这个yolo基本已经可以使用了。
2.6、训练coco128集
采用代码的方式来训练coco128集合
训练成功,如下图:
2.7、yolov11训练测试
用代码也可以训练成功,结果如下图: