Yolov8__Yolov11的安装使用及yolo的演变过程

前言

    当前网络上关于yolo安装和使用的说明普遍比较繁杂。本文结合Pycharm实现对最新的Yolov8和Yolov11模型的安装和使用。为了简化,没有采用cuda版本。因为从算力上来讲,Yolo属于中小模型,一般的图片,cpu的训练就可以快速完成了的。

    本文关于安装的细节相对简略一些,可以配合我的另外一篇博客:Yolo_v8的安装测试(https://blog.csdn.net/quickrubber/article/details/146611155)对比阅读。

一、Yolo的发展历程

这个图其实后面还应加上2024年的YOLOv11,可以参考网上的这张图:

二、安装步骤

2.1、先建立Pycharm工程

采用的Python版本是3.11

2.2、下载

https://github.com/ultralytics/ultralytics.git

2.3、解压覆盖到Pycharm目录

2.4、安装ultralytics

注意,为何下载了ultralytics源码之后,还需要进行pip安装呢。因为,github上提供的只是一个代码的框架和示例程序。所以,为了得到完整的Yolo的功能,还是需要进行pip install ultralytics这个操作的。

    运行如下的命令:

pip install ultralytics -i https://mirrors.aliyun.com/pypi/simple/

如图:

2.5、运行predict命令行实例 

yolo task=detect  mode=predict  model=yolov8n.pt source='cars.jpg'

运行结果如下:

预测图:

说明这个yolo基本已经可以使用了。

2.6、训练coco128集

采用代码的方式来训练coco128集合

训练成功,如下图:

2.7、yolov11训练测试

用代码也可以训练成功,结果如下图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青花瓷

您的鼓励是我创作的巨大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值