【每日一题-leetcode】367.有效的完全平方数

本文介绍了一种不使用内置库函数的有效方法来判断一个给定的正整数是否为完全平方数。通过二分查找算法,该方法在O(logN)的时间复杂度内完成判断,适用于大数值的高效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

367.有效的完全平方数

  1. 有效的完全平方数

难度简单119

给定一个正整数 num,编写一个函数,如果 num 是一个完全平方数,则返回 True,否则返回 False。

说明:不要使用任何内置的库函数,如 sqrt。

示例 1:

输入:16
输出:True

示例 2:

输入:14
输出:False

二分

  //直接二分秒就行 注意num要是一个很大的数 尽量使用Long
    // time : O(logN) space : O(1)
        public boolean isPerfectSquare(int num) {
            if(num < 2){
                return true;
            }
            long left = 2;
            long right = num/2;
            long x = 0;
            long mid = 0;
            while(left <= right){
                mid = left+(right-left)/2;
                x = mid * mid;
                if(x == num){
                    return true;
                }
                if(x > num){
                    right = mid-1;
                }else{
                    left = mid+1;
                }
            }
            return false;
        }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qxlxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值