【每日一题-leetcode】74.搜索二维矩阵

本文介绍了一种高效算法,用于判断目标值是否存在于一个特殊排序的二维矩阵中。该算法利用了矩阵的升序特性,通过二分查找优化搜索过程,实现快速定位目标值。示例代码展示了如何在给定矩阵中查找特定数值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

74.搜索二维矩阵

  1. 搜索二维矩阵

难度

中等

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

  • 每行中的整数从左到右按升序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

示例 1:

输入:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3
输出: true

二分

public boolean searchMatrix(int[][] matrix, int target) {
        if(matrix == null || matrix.length == 0 || matrix[0].length == 0){
            return false;
        }
        //行
        int row = matrix.length;
        int clo = matrix[0].length;
        int left = 0, right = row * clo -1;
        while(left < right){
            int mid = left+(right - left)/2;
            //行->mid/clo   列->mid%clo
            if(matrix[mid/clo][mid%clo] < target){
                left = mid+1;
            }else{
                right = mid;
            }
        }
        return target == matrix[left/clo][left%clo] ? true : false;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qxlxi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值