能量项链(区间dp)

博客介绍了如何使用动态规划(dp)解决能量项链问题,通过dp[l][r]表示区间L-R合并项链的最大价值,考虑环形合并,枚举断点,得到转移方程,并计算合并价值为w[l]*w[k+1]*w[r+1],避免右端点越界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

思路:用dp[l][r]表示区间L-R合并项链可得的最大值,因为也是环形合并,所有数组长度*2,枚举左右端点和中间的断点,那么可以得出转移方程dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+1][r]+val[l][r])此时val[l][r]就是合并l,k和k,r所得价值。根据题意可以发现其价值就是w[l]*w[k+1]*w[r+1]为了防止越界右端点枚举到r-1

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;
const int inf=0x3f3f3f3f;
typedef long long ll;
int n,m;
ll w[210];
ll dp[210]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值