连接格点(最小生成树)

这篇博客探讨了一种解决格点连接的方法,即通过建立包含必选边的图,并利用最小生成树算法来连接横向和纵向的点。在建图过程中,博主详细解释了如何枚举方向并判断相邻关系来添加边。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

思路:对于给出坐标的点,作为必选边,然后将其他横向和纵向边建图,跑最小生成树,这个建图稍微麻烦些,先枚举2个方向,0代表纵向,1表示横向,然后再连接上下左右四个方向,判断此时与方向的关系从而建边。

代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
 
using namespace std;
typedef long long ll;
#define SIS std::ios::sync_with_stdio(false)
#define space putchar(' ')
#define enter putchar('\n')
#define lson root<<1
#define rson root<<1|1
typedef pair<int,int> PII;
typedef pair<int,PII> PIII;
const int mod=100003;
const int N=2e6+5;
const int inf=0x7f7f7f7f;

int gcd(int a,int b)
{
   
   
    return b==0?a:gcd(b,a%b);
}
 
ll lcm(ll a,ll b)
{
   
   
    return a*(b/gcd(a,b));
}
 
template <class T>
void read(T &x)
{
   
   
    char c;
    bool op = 0;
    while(c = getchar()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值