蛮力法在求解“最近对”问题中的应用(JAVA)

本文介绍了一个经典的计算几何问题——寻找平面内一组点中距离最近的两个点。通过一个示例展示了如何使用欧几里得距离公式来计算点之间的距离,并讨论了避免开方运算以提高算法效率的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近对问题是在计算几何问题中最简单的,是指在一个包含n个点的集合中,找到距离最近的两个点,我们这里只研究二维空间中的版本,高维计算基本类似,区别只在于计算两点之间距离的公式略有不同,下面是标准的欧几里得距离公式:


class Point {
    int x;
    int y;

    public Point(int x, int y) {
        this.x = x;
        this.y = y;
    }
}
public class Main {
    public static void main(String[] args) {
        Point[] points = new Point[5];
        points[0] = new Point(1,3);
        points[1] = new Point(2,1);
        points[2] = new Point(3,5);
        points[3] = new Point(4,4);
        points[4] = new Point(5,2);
        double d = 99999999;
        for (int i = 0; i < points.length-1; i++) {
            for (int j = i+1; j < points.length; j++) {
                d = Math.min(d, Math.sqrt(Math.pow(points[i].x-points[j].x, 2)+Math.pow(points[i].y-points[j].y, 2)));
            }
        }
        System.out.println(d);
    }
}

由图可知,最近的两个点就是(3,5)和(4,4)

发现问题:开方计算实际上结果大多是无理数,计算机计算整数的平方根并不是一件轻松的事情,所以应该尽量在高效的算法中避免开方计算。

优化思路:全都比较未开方之前的数即可