最优化学习 约束优化问题

博客围绕约束优化问题展开,提到非光滑无约束优化问题可重构成光滑约束问题。还阐述了约束优化最优解的特征,以具体例子说明实际起作用和不起作用的约束函数,最后表示接下来会介绍最优解的一阶必要条件KKT条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部笔记的汇总贴:最优化学习目录


约束优化问题

( P ) min ⁡ f ( x ) (P) \min f(x) (P)minf(x) s . t .   g i ( x ) ⩽ 0 , i = 1 , … m s.t. \text{ }g_{i}(x) \leqslant 0, i=1, \ldots \mathrm{m} s.t. gi(x)0,i=1,m h i ( x ) = 0 , i = 1 , … . p h_{i}(x)=0, i=1, \ldots . p hi(x)=0,i=1,.p

非光滑无约束优化问题有时可重构成光滑的约束问题
在这里插入图片描述

约束优化最优解的特征

min ⁡ f ( x ) , x ∈ R 2 \min f(x),x\in R^{2} minf(x),xR2 s . t .   g 1 ( x ) ⩽ 0 s.t. \text{ } g_{1}(x)\leqslant 0 s.t. g1(x)0 g 2 ( x ) ⩽ 0 g_{2}(x)\leqslant 0 g2(x)0 g 3 ( x ) ⩽ 0 g_{3}(x)\leqslant 0 g3(x)0

已知 x ∗ x^{*} x是局部最优解
实际起作用的约束函数 g 1 ( x ) , g 2 ( x ) g_{1}(x),g_{2}(x) g1(x),g2(x)
g 1 ( x ∗ ) = g 2 ( x ∗ ) = 0 g_{1}\left(x^{*}\right)=g_{2}\left(x^{*}\right)=0 g1(x)=g2(x)=0
不起作用的约束函数 g 3 ( x ) g_{3}(x) g3(x)
g 3 ( x ) < 0 g_{3}(x) < 0 g3(x)<0

我们观察 x ∗ x^{*} x有以下特点
{ − ∇ f ( x ∗ ) = λ 1 ∇ g 1 ( x ∗ ) + λ 2 ∇ g 2 ( x ∗ ) λ 1 , λ 2 ⩾ 0 \left\{\begin{array}{l}-\nabla f\left(x^{*}\right)=\lambda_{1} \nabla g_{1}\left(x^{*}\right)+\lambda_{2} \nabla g_{2}\left(x^{*}\right) \\ \lambda_{1}, \lambda_{2} \geqslant 0\end{array}\right. {f(x)=λ1g1(x)+λ2g2(x)λ1,λ20
在这里插入图片描述

在这里插入图片描述

接下来会介绍最优解的一阶必要条件 KKT条件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值