double的精度与范围

本文深入探讨了浮点数(float和double)的范围和精度,以及Oracle数据库中Number类型的用法和特性。详细解析了浮点数的指数和尾数位数如何决定其范围与精度,并通过实例展示了Number类型的声明方式和使用场景。同时,文章还提供了Number类型的验证方法和结论,帮助读者更好地理解和应用这些概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 范围
  float和double的范围是由指数的位数来决定的。
  float的指数位有8位,而double的指数位有11位,分布如下:
  float:
  1bit(符号位) 8bits(指数位) 23bits(尾数位)
  double:
  1bit(符号位) 11bits(指数位) 52bits(尾数位)
  于是,float的指数范围为-127~+128,而double的指数范围为-1023~+1024,并且指数位是按补码的形式来划分的。
  其中负指数决定了浮点数所能表达的绝对值最小的非零数;而正指数决定了浮点数所能表达的绝对值最大的数,也即决定了浮点数的取值范围。
  float的范围为-2^128 ~ +2^128,也即-3.40E+38 ~ +3.40E+38;double的范围为-2^1024 ~ +2^1024,也即-1.79E+308 ~ +1.79E+308。

2.  精度
  float和double的精度是由尾数的位数来决定的。浮点数在内存中是按科学计数法来存储的,其整数部分始终是一个隐含着的“1”,由于它是不变的,故不能对精度造成影响。
  float:2^23 = 8388608,一共七位,这意味着最多能有7位有效数字,但绝对能保证的为6位,也即float的精度为6~7位有效数字;
  double:2^52 = 4503599627370496,一共16位,同理,double的精度为15~16位。

3.Oracle中Number类型

在Oracle中Number类型可以用来存储0,正负定点或者浮点数,可表示的数据范围在
1.0 * 10(-130) —— 9.9...9 * 10(125) {38个9后边带88个0}
的数字,当Oracle中的数学表达式的值>=1.0*10(126)时,Oracle就会报错。
Number的数据声明如下:
表示        作用        说明
Number(p, s)        声明一个定点数        p(precision)为精度,s(scale)表示小数点右边的数字个数,精度最大值为38,
Number(p)        声明一个整数        相当于Number(p, 0)
Number        声明一个浮点数        其精度为38,要注意的是scale的值没有应用,也就是说scale的指不能简单的理解为0,或者其他的数。

定点数的精度(p)和刻度(s)遵循以下规则:
?        当一个数的整数部分的长度 > p-s 时,Oracle就会报错
?        当一个数的小数部分的长度 > s 时,Oracle就会舍入。
?        当s(scale)为负数时,Oracle就对小数点左边的s个数字进行舍入。
?        当s > p 时, p表示小数点后第s位向左最多可以有多少位数字,如果大于p则Oracle报错,小数点后s位向右的数字被舍入

4.验证
create or replace function  func_test(p_type number) return number
is
/*
 功能:基于警度图数据同步
*/
 l_cnt number;
begin
 select p_type into l_cnt from dual;
 return l_cnt;
end func_test;
/
show err;

5.结论

number 的总长度是40位,其中可能包括:小数点,负号位。

select to_char(func_test(-987.1234567891234567891234567891234567891234)) from dual;
-987.12345678912345678912345678912345679   //包括小数点及负号位共40位
select to_char(func_test(9876.1234567891234567891234567891234567891234)) from dual;
9876.12345678912345678912345678912345679   //4位整数+小数点+35位小数=40位
select to_char(func_test(987.1234567891234567891234567891234567891234)) from dual;
987.123456789123456789123456789123456789   //3位整数+小数点+36位小数=40位
select to_char(func_test(1234567891234567891234567891234567891234)) from dual;
1234567891234567891234567891234567891234   //40位整数
select to_char(func_test(12345678912345678912345678912345678912345)) from dual;
1.2345678912345678912345678912345679E+40   //41位时精度发生丢失
1.2345678912345678912345678912345679×10^40 即 12345678912345678912345678912345678900000


--------------------------------------------------------------------------------------------

双精度浮点数(double)是计算机使用的一种数据类型。比起单精度浮点数(float)双精度浮点数(double)使用 64 位(8字节) 来存储一个浮点数。 它可以表示十进制的15或16位有效数字,其可以表示的数字的绝对值范围大约是[ 1.7 \times 10^{-308} , \text{1.7} \times 10^{308} ]

格式[编辑]

sign bit(符号): 用来表示正负号

exponent(指数): 用来表示次方数

mantissa(尾数): 用来表示精确度

General double precision float.png

符号[编辑]

0代表数值为正,1代表数值为负。

指数[编辑]

类比整型使用所有位为0的数字表示数值“0”,双精度浮点数表示0时指数部分也为0。若如此,便可能产生冲突:比如全0的数字可能表示“0”,也可能表示\text{1} \times \text{2}^{0} \text{= 1}(参考下文“尾数”的解释)。于是此处规定,指数使用0x3ff(十进制1023)的偏移量,便有以下规则:

  • 0x000:用来代表0(mantissa=0)或下溢数(mantissa不为0)。
  • 0x7ff:用来代表无穷大(mantissa=0)或NaN(mantissa不为0)。
  • 其他:代表2的(exponent-0x3ff)次方。

尾数[编辑]

在二进制的“科学记号”,数字被表示为:

\text{Mantissa} \times \text{2}^\text{exponent}

为了最大限度提高精确度,可以要求尾数规格化,把尾数处理到大于等于1而小于2的区间内,便可省去前导的“1”。例如:

 二进制的  \text{11.101} \times \text{2}^\text{1001} 可以规格化为 \text{1.1101} \times \text{2}^\text{1010},存储时尾数只需要存储1101即可
 二进制的  \text{0.00110011} \times \text{2}^\text{-1100} 可以规格化为 \text{1.10011} \times \text{2}^\text{-1001},存储时尾数只需要存储10011即可

于是,可得以下形式:\text{1.mantissa} \times \text{2}^\text{exponent}

小结[编辑]

根据以上的叙述,一个双精度浮点数所代表的数值为: (-1)^{\text{sign}} \times 2^{\text{exponent} - \text{0x3ff}} \times 1.\text{mantissa}

例子[编辑]

 3ff0 0000 0000 0000   = 1
 c000 0000 0000 0000   = -2
 7fef ffff ffff ffff   ~ 1.7976931348623157 x 10308 (Max Double)
 3fd5 5555 5555 5555   ~ 1/3
 0000 0000 0000 0000   = 0
 8000 0000 0000 0000   = -0
 7ff0 0000 0000 0000   = 無限大
 fff0 0000 0000 0000   = 負無限大

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值