线程池中各个参数如何合理设置

欢迎大家关注我的公众号【老周聊架构】,Java后端主流技术栈的原理、源码分析、架构以及各种互联网高并发、高性能、高可用的解决方案。

一、前言

在开发过程中,好多场景要用到线程池。每次都是自己根据业务场景来设置线程池中的各个参数。这两天又有需求碰到了,索性总结一下方便以后再遇到可以直接看着用。虽说根据业务场景来设置各个参数的值,但有些万变不离其宗,掌握它的原理对如何用好线程池起了至关重要的作用。那我们接下来就来进行线程池的分析。

二、ThreadPoolExecutor的重要参数

我们先来看下ThreadPoolExecutor的带的那些重要参数的构造器。

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
    ...
}

1、corePoolSize: 核心线程数

这个应该是最重要的参数了,所以如何合理的设置它十分重要。

  • 核心线程会一直存活,及时没有任务需要执行。
  • 当线程数小于核心线程数时,即使有线程空闲,线程池也会优先创建新线程处理。
  • 设置allowCoreThreadTimeout=true(默认false)时,核心线程会超时关闭。

如何设置好的前提我们要很清楚的知道CPU密集型IO密集型的区别。

(1)、CPU密集型

CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading 很高。

在多重程序系统中,大部分时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中绝大部分时间用在三角函数和开根号的计算,便是属于CPU bound的程序。

CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问I/O设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。

(2)、IO密集型

IO密集型指的是系统的CPU性能相对硬盘、内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,此时CPU Loading并不高。

I/O bound的程序一般在达到性能极限时,CPU占用率仍然较低。这可能是因为任务本身需要大量I/O操作,而pipeline做得不是很好,没有充分利用处理器能力。

好了,了解完了以后我们就开搞了。

(3)、先看下机器的CPU核数,然后在设定具体参数:

自己测一下自己机器的核数

System.out.println(Runtime.getRuntime().availableProcessors());

CPU核数 = Runtime.getRuntime().availableProcessors()

(4)、分析下线程池处理的程序是CPU密集型还是IO密集型

CPU密集型:corePoolSize = CPU核数 + 1

IO密集型:corePoolSize = CPU核数 * 2

2、maximumPoolSize:最大线程数

  • 当线程数>=corePoolSize,且任务队列已满时。线程池会创建新线程来处理任务。
  • 当线程数=maxPoolSize,且任务队列已满时,线程池会拒绝处理任务而抛出异常。

3、keepAliveTime:线程空闲时间

  • 当线程空闲时间达到keepAliveTime时,线程会退出,直到线程数量=corePoolSize。
  • 如果allowCoreThreadTimeout=true,则会直到线程数量=0。

4、queueCapacity:任务队列容量(阻塞队列)

  • 当核心线程数达到最大时,新任务会放在队列中排队等待执行

5、allowCoreThreadTimeout:允许核心线程超时

6、rejectedExecutionHandler:任务拒绝处理器

两种情况会拒绝处理任务:

  • 当线程数已经达到maxPoolSize,且队列已满,会拒绝新任务。
  • 当线程池被调用shutdown()后,会等待线程池里的任务执行完毕再shutdown。如果在调用shutdown()和线程池真正shutdown之间提交任务,会拒绝新任务。

线程池会调用rejectedExecutionHandler来处理这个任务。如果没有设置默认是AbortPolicy,会抛出异常。

ThreadPoolExecutor 采用了策略的设计模式来处理拒绝任务的几种场景。

这几种策略模式都实现了RejectedExecutionHandler 接口。

  • AbortPolicy 丢弃任务,抛运行时异常。
  • CallerRunsPolicy 执行任务。
  • DiscardPolicy 忽视,什么都不会发生。
  • DiscardOldestPolicy 从队列中踢出最先进入队列(最后一个执行)的任务。

三、如何设置参数

默认值:

corePoolSize = 1

maxPoolSize = Integer.MAX_VALUE

queueCapacity = Integer.MAX_VALUE

keepAliveTime = 60s

allowCoreThreadTimeout = false

rejectedExecutionHandler = AbortPolicy()

如何来设置呢?

需要根据几个值来决定

tasks :每秒的任务数,假设为500~1000

taskcost:每个任务花费时间,假设为0.1s

responsetime:系统允许容忍的最大响应时间,假设为1s

做几个计算

corePoolSize = 每秒需要多少个线程处理?

threadcount = tasks/(1/taskcost) = tasks*taskcout = (500 ~ 1000)*0.1 = 50~100 个线程。

corePoolSize设置应该大于50。

根据8020原则,如果80%的每秒任务数小于800,那么corePoolSize设置为80即可。

queueCapacity = (coreSizePool/taskcost)*responsetime

计算可得 queueCapacity = 80/0.1*1 = 800。意思是队列里的线程可以等待1s,超过了的需要新开线程来执行。

切记不能设置为Integer.MAX_VALUE,这样队列会很大,线程数只会保持在corePoolSize大小,当任务陡增时,不能新开线程来执行,响应时间会随之陡增。

maxPoolSize 最大线程数在生产环境上我们往往设置成corePoolSize一样,这样可以减少在处理过程中创建线程的开销。

rejectedExecutionHandler:根据具体情况来决定,任务不重要可丢弃,任务重要则要利用一些缓冲机制来处理。

keepAliveTimeallowCoreThreadTimeout采用默认通常能满足。

以上都是理想值,实际情况下要根据机器性能来决定。如果在未达到最大线程数的情况机器cpu load已经满了,则需要通过升级硬件和优化代码,降低taskcost来处理。


以下是我自己的的线程池配置:

@Configuration
public class ConcurrentThreadGlobalConfig {
    @Bean
    public ThreadPoolTaskExecutor defaultThreadPool() {
        ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
        //核心线程数目
        executor.setCorePoolSize(65);
        //指定最大线程数
        executor.setMaxPoolSize(65);
        //队列中最大的数目
        executor.setQueueCapacity(650);
        //线程名称前缀
        executor.setThreadNamePrefix("DefaultThreadPool_");
        //rejection-policy:当pool已经达到max size的时候,如何处理新任务
        //CALLER_RUNS:不在新线程中执行任务,而是由调用者所在的线程来执行
        //对拒绝task的处理策略
        executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
        //线程空闲后的最大存活时间
        executor.setKeepAliveSeconds(60);
        //加载
        executor.initialize();

        return executor;
    }
}

四、线程池队列的选择

workQueue - 当线程数目超过核心线程数时用于保存任务的队列。主要有3种类型的BlockingQueue可供选择:无界队列有界队列同步移交。从参数中可以看到,此队列仅保存实现Runnable接口的任务。

这里再重复一下新任务进入时线程池的执行策略:

  • 当正在运行的线程小于corePoolSize,线程池会创建新的线程。
  • 当大于corePoolSize而任务队列未满时,就会将整个任务塞入队列。
  • 当大于corePoolSize而且任务队列满时,并且小于maximumPoolSize时,就会创建新额线程执行任务。
  • 当大于maximumPoolSize时,会根据handler策略处理线程。

1、无界队列

队列大小无限制,常用的为无界的LinkedBlockingQueue,使用该队列作为阻塞队列时要尤其当心,当任务耗时较长时可能会导致大量新任务在队列中堆积最终导致OOM。阅读代码发现,Executors.newFixedThreadPool 采用就是 LinkedBlockingQueue,而博主踩到的就是这个坑,当QPS很高,发送数据很大,大量的任务被添加到这个无界LinkedBlockingQueue 中,导致cpu和内存飙升服务器挂掉。

当然这种队列,maximumPoolSize 的值也就无效了。当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。

2、有界队列

当使用有限的 maximumPoolSizes 时,有界队列有助于防止资源耗尽,但是可能较难调整和控制。常用的有两类,一类是遵循FIFO原则的队列如ArrayBlockingQueue,另一类是优先级队列如PriorityBlockingQueuePriorityBlockingQueue中的优先级由任务的Comparator决定。

使用有界队列时队列大小需和线程池大小互相配合,线程池较小有界队列较大时可减少内存消耗,降低cpu使用率和上下文切换,但是可能会限制系统吞吐量。

3、同步移交队列

如果不希望任务在队列中等待而是希望将任务直接移交给工作线程,可使用SynchronousQueue作为等待队列。SynchronousQueue不是一个真正的队列,而是一种线程之间移交的机制。要将一个元素放入SynchronousQueue中,必须有另一个线程正在等待接收这个元素。只有在使用无界线程池或者有饱和策略时才建议使用该队列。

最后我分享一篇用动画展示线程池各个参数的文章:https://zhuanlan.zhihu.com/p/112527671 ,希望对你有帮助。

### 线程池参数最佳配置策略及原理 #### 参数概述 线程池的主要参数包括核心线程数(`corePoolSize`)、最大线程数(`maximumPoolSize`)、工作队列容量(`workQueue`),这些参数直接影响线程池的行为和性能。 - **核心线程数 (`corePoolSize`)** 核心线程数是指线程池中始终保持活跃状态的最小线程数量,即使它们处于空闲状态也不会被销毁,除非设置了 `allowCoreThreadTimeout=true`[^4]。合理设置该值可以减少频繁创建和销毁线程带来的开销。 - **最大线程数 (`maximumPoolSize`)** 最大线程数表示线程池允许的最大并发线程数。当任务提交到线程池时,如果当前活动线程数已经达到核心线程数且任务无法加入队列,则会尝试创建新的非核心线程直到达到此上限[^3]。 - **工作队列容量 (`workQueue`)** 工作队列用于存储等待执行的任务。其大小决定了在线程资源不足的情况下能够容纳多少待处理请求。过小可能导致大量任务立即进入拒绝策略阶段;过大则可能消耗过多内存并延迟响应速度[^2]。 #### 配置原则与实践建议 1. **基于硬件资源评估核心线程数** - CPU密集型任务应考虑CPU核数作为基础依据之一。通常情况下,每颗物理/逻辑处理器对应一个或多个常驻线程较为合适,以充分利用计算能力而不造成过度竞争。 ```java int corePoolSize = Runtime.getRuntime().availableProcessors() * factor; // factor可根据具体需求调整 ``` 2. **设定合理的最大线程数** - 对于I/O密集型操作而言,由于单个线程大部分时间都在等待外部输入输出完成而非真正占用CPU周期,因此理论上可以容忍更高的并发度来弥补这部分闲置期的影响。 - 不过需要注意的是,盲目增加这个数值可能会引发上下文切换成本上升等问题,所以仍需谨慎测试找到平衡点。 3. **权衡队列长度与吞吐量目标** - 较短的工作队列有助于快速反馈系统负载状况变化趋势,并及时采取措施应对突发流量冲击; - 而较长的缓冲区虽然能暂时缓解压力高峰现象,却也可能隐藏潜在瓶颈直至崩溃临界点才显现出来——故而必须结合业务场景特点仔细考量取舍关系。 4. **综合运用多种机制优化表现效果** - 利用超时淘汰功能(`setKeepAliveTime(long time, TimeUnit unit)`控制临时增生出来的额外工作者们存活期限长短,在低谷时段自动缩减规模从而节省不必要的开支费用。 - 启用动态调节特性使得整个架构具备更强适应性和灵活性面对不同工况下的挑战考验。 ```java ThreadPoolExecutor executor = new ThreadPoolExecutor( corePoolSize, maximumPoolSize, keepAliveTime, TimeUnit.SECONDS, workQueue, threadFactory, handler); // 自定义拒绝策略实例化对象传入此处 ``` 上述代码片段展示了如何通过构造函数指定各个关键属性值构建定制化的Executors框架组件实体类形式存在其中每一个组成部分都扮演着不可或缺的角色共同协作达成预期目的即高效稳定地管理异步作业流程运转过程中的各个环节部分相互之间紧密联系缺一不可。 ---
评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老周聊架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值