如何精准统计出你的接口“QPS”是多少

QPS是什么

我们先回忆一下,QPS的概念如下所示:

QPS(Query Per Second):每秒请求数,就是说服务器在一秒的时间内处理了多少个请求。

那我们怎么估出每秒钟能处理多少请求呢?

OK,用日志来估计!那日志怎么记录呢,细分下来,有两种方式。

方式一:自己在接口里记录

这种方式指的是在你的接口里,日志记录了能体现该接口特性的,并具有唯一性的字符串!

例如,下面这一段代码

@RestController 
@RequestMapping("/home") 
public class IndexController {
 //省略
 @RequestMapping("/index") 
 String index() { 
 logger.info("渣渣烟");
 return "index"; 
 } 
} 

假设现在我要统计index这个接口的QPS!

OK,什么叫能体现该接口特性的字符串呢!就像上面的"渣渣烟"这个字符串,只在index这个接口里出现过,没在其他其他接口里出现过!因此,只要统计出"渣渣烟"这个字符串在日志里的出现次数,就能知道该接口的请求次数!

什么叫具有唯一性的字符串呢!所谓唯一性,指的是"渣渣烟"这个字符串,在这个接口的一次调用流程中,只出现一次!如果出现两次,就会导致到时候统计出来的次数会多一倍,所以尽量选择具有唯一性的字段!

方式二:利用tomcat的access log

如果你的日志里没有我上面提到的字段。OK,那就用tomcat自带的access log功能吧!

因为我平时内置的tomcat比较多,指定下面两个属性即可

server.tomcat.accesslog.directory
设定log的目录,默认: logs
server.tomcat.accesslog.enabled
是否开启access log,默认: false

此时,你访问一次/home/index地址,会有下面这样日志

127.0.0.1 - - [19/Aug/2019:23:55:27 +0800] “POST /home/index HTTP/1.1” 200 138
那么,你就可以根据日志中,该记录的出现次数,统计index接口的QPS。

实战

假设,你这会日志已经拿到手了,名字为xxx.log。

假设日志内容如下

//省略,都长差不多,贴其中一条就行
0:0:0:0:0:0:0:1 - - [27/Dec/2018:20:41:57 +0800] "GET /mvc2/upload.do HTTP/1.1" 404 949 http-bio-8080-exec-5 43
//省略

这个时候,你执行一串命令长下面这样的,进行统计就行!

cat xx.log |grep 'GET /mvc2'|cut -d ' ' -f4|uniq -c|sort -n -r 

出来等结果就是

20 [27/Dec/2018:20:40:44
11 [27/Dec/2018:20:47:58
10 [27/Dec/2018:20:47:42
1 [27/Dec/2018:20:41:57

然后你就知道,原来在20:40:44 分。。这个接口的QPS最高,达到了惊人的20QPS!

现在,来讲一下命令什么意思!

cat xxx.log : 读文件内容

grep ‘GET /mvc2’ : 将文件内容按照GET /mvc2 进行过滤

cut -d ’ ’ -f4 : 过滤出来的内容按照空格进行分割,取第四列内容

uniq -c : 每列旁边显示该行重复出现的次数

sort -n -r : 依照数值的大小排序

那么,如果是其他日志格式,无外乎 ”cut语句“的处理不同而已,道理类似!此法可以估算出单机的某接口的 “QPS” 是多少!

估算

我们现在估计出了单机的QPS。接下来,估算集群的QPS。

这就要根据负载均衡的策略来估计!

比如,你部署了32台机器,负载均衡的策略恰巧为轮询,那集群的QPS就是单机的QPS乘32就好了。

所以,根据具体的策略,来估计整个集群的QPS多大!一般有2000qps已经是很高的了。

<think>嗯,用户这次想深入了解Sentinel的限流实现机制。从对话历史看,我之前已经详细介绍了核心原理,但用户可能觉得不够具体,需要更落地的技术细节。用户提供的四个引用材料很有价值。引用[1]提到滑动窗口算法是核心,引用[3]展示的代码片段揭示关键入口是SphU.entry(),而引用[4]的源码片段直接暴露了FlowRuleChecker的校验逻辑。这些恰好能组成完整的实现链条。用户应该是个开发者,正在调研限流组件选型或解决线上流量问题。ta跳过基础概念直接问实现方式,说明有一定技术背景,可能更关心:-如何避免传统固定窗口的临界突变问题(所以需要展开讲滑动窗口的创新点)-代码层面怎样不侵入业务逻辑(entry/exit的AOP设计值得强调)-集群限流的挑战(引用[2]提到的集群功能需要补充说明)需要特别注意两点:1.引用[4]提到FlowRuleChecker会根据规则类型调用不同执行器,这个分层设计对理解扩展性很重要2.用户给的代码片段中finally块的exit()方法容易被人忽略,其实它是统计耗时的关键,会影响令牌桶/漏桶的精度上次回答覆盖了原理层,这次应该聚焦三个新维度:-滑动窗口的具体数据结构实现(比如引用[4]的DefaultNode如何存储时间片段)-规则执行路径的代码级解析(从entry()到canPass()的调用链)-集群限流时怎么解决时钟同步问题(引用[2]提到但没展开)意外发现用户给的引用[3]示例代码有个隐患:resource是硬编码字符串,实际生产应该用常量或枚举,这点可以作为优化建议补充。另外引用[1][2]都强调可视化,但用户没问,暂时放在扩展部分即可。最后的代码片段要选最有代表性的,比如展示令牌桶的WarmUpController实现片段(因为涉及预热算法),同时保持中文注释帮助理解。</think> Sentinel 的限流实现基于**滑动窗口算法**和**责任链模式**,通过规则校验和实时统计实现精准流量控制。以下是关键原理及实现方式的详细说明: --- ### **一、核心限流原理** 1. **滑动窗口算法**(核心统计模型) - 将时间切分为多个小窗口(如1秒=2个500ms窗口),每个窗口独立统计请求量。 - 窗口按时间滑动(例如每500ms更新一次),避免固定窗口的临界突变问题。 - 例如:限流1000 QPS时,若当前窗口(0-500ms)已通过800请求,则后续200ms最多允许200请求。 2. **多级流量统计** - **Node**:存储资源的实时指标(如QPS、线程数)。 - **ClusterNode**:聚合相同资源的集群统计(用于集群限流)。 - **StatisticNode**:实现滑动窗口的具体计数逻辑,通过`LeapArray`数据结构管理时间窗口。 --- ### **二、实现流程(责任链模式)** 限流逻辑由`ProcessorSlotChain`串联执行,关键步骤如下: ```java // 伪代码:Sentinel核心处理链 public void entry(String resource) { try { // 1. 触发规则校验链 fireEntry(resource); // 2. 执行实际业务逻辑 doBusinessLogic(); } catch (BlockException e) { // 3. 规则触发则限流 handleBlockedRequest(); } finally { // 4. 退时更新统计 exit(); } } ``` #### **具体Slot的作用**: 1. **FlowSlot** - 调用`FlowRuleChecker.checkFlow()`校验规则。 - 根据规则类型(直接拒绝/WarmUp/排队)选择控制器(如`DefaultController`)。 2. **StatisticSlot** - 实时更新资源指标(QPS/响应时间)。 - 触发后续熔断降级等规则。 --- ### **三、限流规则执行逻辑** 以**本地限流**为例(`passLocalCheck()`): ```java private boolean passLocalCheck(FlowRule rule, Context context, Node node, int count) { // 1. 选择统计节点(根据规则策略) Node selectedNode = selectNodeByStrategy(rule, context, node); // 2. 调用流量控制器(如令牌桶/漏桶) return rule.getRater().canPass(selectedNode, count); } ``` #### **流量控制器类型**: | 控制器类型 | 实现类 | 适用场景 | |--------------------|----------------------|------------------------------| | **直接拒绝** | `DefaultController` | 硬性QPS/线程数限制 | | **冷启动** | `WarmUpController` | 系统预热避免瞬时过载 | | **匀速排队** | `RateLimiterController` | 请求间隔均匀化(漏桶算法) | --- ### **四、关键技术设计** 1. **动态规则加载** - 规则通过`FlowRuleManager`管理,支持控制台实时推送更新。 2. **集群限流** - 基于Token Server协调各节点配额(需部署独立服务)。 3. **低性能损耗** - 滑动窗口计数使用无锁设计(`AtomicLong`),StatisticSlot异步统计。 --- ### **五、代码示例** 定义资源与规则: ```java // 初始化限流规则 private static void initFlowRule() { List<FlowRule> rules = new ArrayList<>(); FlowRule rule = new FlowRule("orderQuery"); // 资源名 rule.setCount(50); // QPS阈值 rule.setGrade(RuleConstant.FLOW_GRADE_QPS); rule.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_DEFAULT); // 直接拒绝 rules.add(rule); FlowRuleManager.loadRules(rules); } // 业务代码中埋点 try (Entry entry = SphU.entry("orderQuery")) { // 业务逻辑 } catch (BlockException e) { // 被限流时的处理 } ``` --- ### **适用场景分析** | **场景** | **推荐控制器** | **优势** | |----------------------|----------------------|------------------------------| | API接口突发流量 | `DefaultController` | 快速拒绝超阈值请求 | | 秒杀系统预热 | `WarmUpController` | 避免冷启动压垮系统 | | MQ消费端削峰填谷 | `RateLimiterController` | 匀速消费,保护下游服务 | --- ### **注意事项** 1. **规则生效范围**:`limitApp`参数可指定针对特定调用方限流。 2. **资源名唯一性**:不同资源独立统计,需避免命名冲突。 3. **集群限流延迟**:Token Server模式存在网络通信开销,不适用于毫秒级精度场景。 > 参考:Sentinel 限流的实现依赖于实时统计和规则链的高效协同,其滑动窗口模型在精度与性能间取得了良好平衡[^1]。在实际应用中需根据流量特征选择合适的控制策略[^2],并通过 Sentinel 控制台实时监控调整规则[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科比不来it

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值