Cursor Agent 模式实现复杂工作流的编排与执行

引言

Dify Workflows MCP Server (TypeScript)设计与实战 文章中提到过通过 MCP 调用编排好的 Dify 工作流,那在 Cursor 中是否可以 自行实现 对应的工作流编排效果,这样可以充分的利用 Cursor 中的代码上下文,从而保证生成的代码可以更符合项目的需求,进一步降低手工调整的时间。

需求

在Cursor 中实现工作流编排,通过 Agent 模式执行编排好的工作流

核心功能如下:

  1. 提供项目通用工作流编排模板
  2. 基于模版编写要实现功能对应的工作流
  3. Agent模式执行工作流
  4. 保存工作流执行上下文,便于追溯

调研

Cline-memory-bank 结构化文档管理 AI 上下文,在项目开发过程中自动生成有价值的文档。

什么是 memory-bank

memory-bank 是一个结构化文档系统,它允许 Cline 在会话之间保持上下文。它将 Cline 从无状态的助手转变为持久状态的开发伙伴,可以有效地 “记住” 您随时间推移的项目细节。

核心优势

  • 上下文保持:在会话之间持久化项目知识

  • 开发体验一致:使 Cline 交互体验可预测

  • 文档自动化:在项目开发过程中自动生成有价值的文档

  • 可扩展至任何项目:适用于任何规模或复杂度的项目

  • 技术无关:与任何技术栈或语言兼容

实现方案

基于 结构化的 markdown 文档 进行任务编排

核心文件:

  1. task-list-management.mdc:任务列表管理规则文件,用于在 markdown 文件中创建、执行和管理任务列表以跟踪项目进度的全面指南(Prompt规则)

  2. memory-bank:存放编排好的任务列表 markdown 文件,用于任务执行和进度更新

实现细节展示

为了方便大家直接使用,我将省略其中多个版本的迭代细节,下面会给出直接可用的版本

task-list-management.mdc

用于在 memory-bank 目录中创建、执行和管理任务列表以跟踪项目进度的全面指南,存放位置在 .cursor/rules/task-list-management.mdc

### Dify 和 DeepSeek 在企业知识库中的解决方案实现方法 #### 1. 技术架构概述 Dify 是一种专注于企业知识管理的工具,能够帮助企业自动处理和维护内部数据源。其核心功能在于自动化地更新、分类、存储以及高效检索知识[^1]。而 DeepSeek 则是一种大语言模型 (LLM),擅长于复杂的信息分析推理能力,在提供精准答案的同时还展示了详细的思考过程[^3]。 两者的结合可以为企业构建一个强大且灵活的知识管理系统。具体来说,Dify 提供了一个结构化的框架来管理和组织来自不同渠道的数据;此同时,DeepSeek 增强了系统的智能化水平,使得该系统不仅限于简单的信息查询,还可以完成更深层次的任务如逻辑推导或趋势预测。 #### 2. 集成方式说明 为了成功实施这一联合方案,通常需要按照如下方式进行配置: - **安装并初始化 Ollama**: 这是一个轻量级的服务端程序,用于托管各种大型预训练模型(LPMs),其中包括但不限于 DeepSeek 家族成员。通过设置 API 接口参数,可以让其他应用程序轻松调用这些 AI 功能。 ```bash docker run --rm -p 11434:11434 ollama/ollama serve ``` - **引入 DeepSeek 至项目环境**: 下载所需版本的 DeepSeek 模型文件至本地服务器上,并确保它们被正确加载到运行时环境中以便随时响应请求。 ```python from deepseek import generate_text result = generate_text(prompt="请解释量子计算基本原理", max_length=500) print(result['generated_text']) ``` - **连接 Dify 平台服务**: 注册账户之后登录后台管理系统界面,创建新的应用实例并将上述提到的人工智能组件绑定进去形成闭环生态体系。此外还需要定义好各个字段之间的映射关系以保障整体流程顺畅无阻塞现象发生。 #### 3. 应用场景举例 当这套完整的基础设施搭建完毕以后,就可以投入到具体的业务环节当中去了。比如在一个跨国制药集团里边,科研人员每天都要面对海量的专业文献资料,这时候如果借助我们所描述的技术栈,则可以从以下几个方面带来显著改善效果: - 自动摘要生成:快速提炼每篇论文的核心要点; - 关键词提取标注:帮助建立统一标准术语表便于后续统计分析工作开展; - 类似案例推荐引擎:基于历史积累发现潜在关联线索从而加速新药研发进度等等[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值