求解三维空间中两向量之间的夹角

本文介绍了一种计算三维空间中两个向量夹角的方法,包括锐角和钝角,利用点乘和叉乘原理,通过C++编程实现,确保角度范围在0到2π之间。

问题描述:已知三维空间中的三个点P1P_1P1P2P_2P2P3P_3P3,求向量P1P2→\overrightarrow{P_1P_2}P1P2P1P3→\overrightarrow{P_1P_3}P1P3之间的夹角,要求必须能够计算出[0, 2π\piπ)之间的数值,而不仅仅是只能求出锐角,并用C++或Python或MATLAB语言进行算法实现。

问题分析:为了求解出这个问题,首先需要引入三维向量的点乘和叉乘的知识。最后,根据点乘和叉乘推导出两个空间向量之间夹角的求解公式。
空间三维向量的叉乘:
C→=A→×B→\overrightarrow{C} = \overrightarrow{A} \times \overrightarrow{B}C=A×BC→\overrightarrow{C}C也是一个空间三维向量,方向通过右手定则来判断,即一个垂直于向量 A→\overrightarrow{A}A和向量 B→\overrightarrow{B}B所在平面的向量。
(0)∣C→∣=∣A→×B→∣=∣A→∣∗∣B→∣∗sin(θ) |\overrightarrow{C}|=|\overrightarrow{A} \times \overrightarrow{B}|=|\overrightarrow{A} |*| \overrightarrow{B}|*sin(\theta) \tag{0} C=A×B=ABsin(θ)(0)

向量A→∗B→\overrightarrow{A}*\overrightarrow{B}AB是一个数,它的大小是:
(1)A→∗B→=∣A→∣∗∣B→∣∗cos(θ) \overrightarrow{A}*\overrightarrow{B}=|\overrightarrow{A}|*|\overrightarrow{B}|*cos(\theta) \tag{1} AB=ABcos(θ)(1)
现在,将C→=A→×B→\overrightarrow{C}=\overrightarrow{A} \times \overrightarrow{B}C=A×BC→\overrightarrow{C}C 代入上述公式(1),则有如下的表达式:
(2)C→∗C→=(A→×B→)∗C→=∣A→×B→∣∗∣C→∣∗cos(θ) \overrightarrow{C} * \overrightarrow{C}=(\overrightarrow{A} \times \overrightarrow{B}) * \overrightarrow{C}=|\overrightarrow{A} \times \overrightarrow{B}| * |\overrightarrow{C}| * cos(\theta) \tag{2} CC=(A×B)C=A×BCcos(θ)(2)
因此,有:
(3)cos(θ)=(A→×B→)∗C→∣A→×B→∣∗∣C→∣=cos(0)=1 cos(\theta)=\frac{(\overrightarrow{A} \times \overrightarrow{B}) * \overrightarrow{C}}{|\overrightarrow{A} \times \overrightarrow{B}| * |\overrightarrow{C}|} = cos(0) = 1 \tag{3} cos(θ)=A×BC(A×B)C=cos(0)=1(3)
注意:在公式(3)中,之所以为cos(θ)=cos(0)cos(\theta)=cos(0)cos(θ)=cos(0),因为A→×B→=C→\overrightarrow{A} \times \overrightarrow{B}=\overrightarrow{C}A×B=C
由公式(3)结合公式(0),有:
(4)∣C→∣=∣A→×B→∣=(A→×B→)∗C→∣C→∣=(A→×B→)∗n→=∣A→∣∗∣B→∣∗sin(θ) |\overrightarrow{C}|=|\overrightarrow{A} \times \overrightarrow{B}|=\frac{(\overrightarrow{A} \times \overrightarrow{B}) * \overrightarrow{C}}{|\overrightarrow{C}|}=(\overrightarrow{A} \times \overrightarrow{B})*\overrightarrow{n}=|\overrightarrow{A}|*|\overrightarrow{B}|*sin(\theta) \tag{4} C=A×B=C(A×B)C=(A×B)n=ABsin(θ)(4)
注意:n→\overrightarrow{n}nC→\overrightarrow{C}C的单位向量,即A→×B→\overrightarrow{A} \times \overrightarrow{B}A×B的单位法向量。
接下来,我们再来推导如何求解 θ\thetaθ 的公式:
综合公式(4)和公式(2),可得:
(5)θ=atan2(sin(θ),cos(θ))=atan2((A→×B→)∗n→,A→∗B→)=atan2((A→×B→).norm(),A→∗B→) \theta = atan2(sin(\theta), cos(\theta))=atan2((\overrightarrow{A} \times \overrightarrow{B})*\overrightarrow{n}, \overrightarrow{A}*\overrightarrow{B}) =atan2((\overrightarrow{A} \times \overrightarrow{B}).norm(), \overrightarrow{A}*\overrightarrow{B}) \tag{5} θ=atan2(sin(θ),cos(θ))=atan2((A×B)n,AB)=atan2((A×B).norm(),AB)(5)
但是,存在一个问题,即公式(5)返回的数值是一个范围在 0 到 π\piπ 之间的数值,而不是我们想要的 0 到 2π\piπ的数值,即存在旋转的方向问题,当旋转的角度超过 180∘180^{\circ}180 时,就会就会计算出一个反向旋转的角度小于 180∘180^{\circ}180的角度值。为此,我们需要判断旋转的方向,即在向量叉乘的过程中得到的法向量的 zzz 值是正的还是负的。通过这个来判断法向量的方向问题,通常当法向量的 zzz 值如果是负的,那么需要通过 2π−θ2\pi-\theta2πθ 来得到真实的旋转角度,此时得到的旋转角度是一个大于 π\piπ 的数值。


公式推导完毕之后,我们就可以通过C++编程来实现该求解算法。我们会使用到Eigen线性代数库,这是一个在数值计算和机器人以及计算机视觉、图像处理等领域非常重要的一个基础库,很多重量级的开源算法库都是在Eigen基础上构建的。Eigen也非常好用,甚至直接从官网下载源代码解压就可以用,因为这个库只有头文件,不需要编译源码,解压即安装。
CMakeLists.txt

cmake_minimum_required(VERSION 2.8.3)
set(CMAKE_CXX_STANDARD 14)
project(Demo)
find_package(Eigen3 REQUIRED)
add_executable(${PROJECT_NAME} "main.cpp")

main.cpp

#include <iostream>
#include <Eigen/Dense>

typedef Eigen::Vector3d Point;

double getDegAngle(Point p1, Point p2, Point p3) {
    Eigen::Vector3d v1 = p2 - p1;
    Eigen::Vector3d v2 = p3 - p1;
    //one method, radian_angle belong to 0~pi
    //double radian_angle = atan2(v1.cross(v2).transpose() * (v1.cross(v2) / v1.cross(v2).norm()), v1.transpose() * v2);
    //another method, radian_angle belong to 0~pi
    double radian_angle = atan2(v1.cross(v2).norm(), v1.transpose() * v2);
    if (v1.cross(v2).z() < 0) {
        radian_angle = 2 * M_PI - radian_angle;
    }
    return radian_angle * 180 / M_PI;
}

int main() {
    //Point p1(0, 0, 0), p2(1, 0, 0), p3(0, -1, 0);
    //Point p1(0, 0, 0), p2(1, 0, 0), p3(0, 1, 0);
    //Point p1(0, 0, 0), p2(1, 0, 0), p3(0.5, 0.5, 0);
    Point p1(0, 0, 0), p2(1, 0, 0), p3(0.5, -0.5, 0);
    std::cout << "The Degree Angle is: " << getDegAngle(p1, p2, p3) << "\n";
    return 0;
}

测试结果:

The Degree Angle is: 270
The Degree Angle is: 90
The Degree Angle is: 45
The Degree Angle is: 315
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值