快速排序的时间复杂度并不固定,如果在最坏情况下(在一个原本逆向排序的数列中选择第一个元素为基准元素)速度比较慢,达到 O(n2)O(n^2)O(n2)(和选择排序一个效率),但是如果在比较理想的情况下时间复杂度 O(nlogn)O(nlogn)O(nlogn)。
实现快速排序的关键在于先在数组中选择一个数字,接下来把数组中的数字分为两部分,比选择的数字小的数字移动到数组的左边,比选择的数字大的数字移动到数组的右边。这体现了分治法的思想。
下面我们来实现这个函数:
int Partition(int data[],int length,int start,int end)
{
if(data == nullptr || length <= 0 || start < 0 || end >=length)
throw new std::exception("Invalid Parameters");
int index = RandomInRange(start,end);
Swap(&data[index],&data[end]);
int small = start - 1;
for(index = start; index < end; index++)
{
if(data[index]<data[end])
{
++small;
if(small != index)
Swap(&data[index],&data[small]);
}
}
++small;
Swap(&data[small],&data[end]);
return small;
}
int RandomInRange(int min, int max)
{
int random = rand()%(max - min +1) +min;
return random;
}
int Swap(int *num1, int *num2)
{
int temp = *num1;
*num1 = num2;
*num2 = temp;
}
上面代码中函数RandomInRange用来生成一个在start和end之间的随机数,函数Swap用来交换两个数字。
下面我们用递归来实现快速排序的代码:
void QuickSort(int data[], int length, int start, int end)
{
if(start == end)
return;
int index = Partition(data, length, start, end);
if(index > start)
QuickSort(data, length, start, index -1);
if(index < end)
QuickSort(data, length, index + 1, end);
}
非递归思路:因为递归的本质是栈,因此我们非递归实现的过程中,借助栈来保存中间变量就可以实现非递归了。在这里中间变量也就是通过Pritation函数划分之后分成左右两部分的首尾指针,只需要保存这两部分的首尾指针即可。
我们再来编写一下非递归来实现快速排序的代码。
void QuickSort(int data[], int length, int start, int end)
{
if(start == end)
return;
stack<int> temp;
int i,j;
temp.push(end);
temp.push(left);
while(!temp.empty())
{
i = temp.top();
temp.pop();
j = temp.top();
temp.pop();
if(i < j)
{
k = Partition(data, i ,j)
if(k > i)
{
temp.push(k -1);
temp.push(i);
}
if(k < j)
{
temp.push(j);
temp.push(k +1);
}
}
}
}