【pytorch】nn.Embedding()

nn.Embedding是PyTorch中将词汇转换为数值向量的工具,用于深度学习模型。它允许自动学习每个词的向量表示,并包含参数如词典大小、向量维度、填充ID等。nn.Embedding层的权重是可学习的,形状为(num_embeddings, embedding_dim),初始值在(0, 1)之间。" 104348143,8367062,Contiki操作系统中的协程实现解析,"['操作系统', '内核分析', '嵌入式', 'C语言', '实时操作系统']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

翻译过来的意思就是词嵌入,通俗来讲就是将文字转换为一串数字。因为数字是计算机更容易识别的一种表达形式。
我们词嵌入的过程,就相当于是我们在给计算机制造出一本字典的过程。计算机可以通过这个字典来间接地识别文字。
词嵌入向量的意思也可以理解成:词在神经网络中的向量表示。

其包含的参数如下:

torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None,
					max_norm=None,  norm_type=2.0
### PyTorch `nn.Embedding` 的用法 在自然语言处理 (NLP) 和其他领域中,嵌入层 (`Embedding Layer`) 是非常重要的组件之一。PyTorch 提供了 `torch.nn.Embedding` 类来创建和管理这些嵌入。 #### 创建 Embedding 层 可以通过指定词汇表大小(即词典中的单词数量)以及每个词的维度来初始化一个 embedding 层: ```python import torch from torch import nn embedding = nn.Embedding(num_embeddings=10, embedding_dim=3) ``` 这里 `num_embeddings` 表示词汇量大小,而 `embedding_dim` 则表示每个词语对应的向量长度[^1]。 #### 输入与输出形状 对于输入张量而言,其最后一个维度应当代表 batch 中样本的数量;其余所有前置维度都将被视作单一样本的一部分。因此,在大多数情况下,输入会是一个二维张量 `(batch_size, seq_len)` 或者一维张量 `(seq_len,)` 当批次大小为 1 时。该函数将会返回具有相同前导尺寸的新张量,但在最后增加了一个新的特征轴用于存储 embeddings 结果,形成三维张量 `(batch_size, seq_len, embedding_dim)` 或两维张量 `(seq_len, embedding_dim)` 如果批次大小为 1。 #### 使用预训练权重 如果希望利用已经预先训练好的 word vectors 初始化 embedding 层,则可以这样做: ```python pretrained_weights = ... # 加载预训练权重矩阵 vocab_size, embed_size = pretrained_weights.shape embedding_layer = nn.Embedding(vocab_size, embed_size).from_pretrained(pretrained_weights) ``` 注意这里的 `.from_pretrained()` 方法可以直接接受 numpy 数组或其他形式的数据作为参数,并据此设置初始权重值。 #### 实际应用案例 考虑如下场景:给定一批句子 ID 序列,想要获取它们各自的 embedding 向量以便后续处理。假设我们有一个简单的例子,其中包含三个句子,每句话有两个 token IDs 组成的小序列: ```python input_tensor = torch.LongTensor([[1, 2], [4, 5], [7, 8]]) output_embedding = embedding(input_tensor) print(output_embedding.size()) # 输出应形如: torch.Size([3, 2, 3]) ``` 这段代码片段展示了如何将整数型 tensor 转换成相应的浮点型 embedding vector 形式的操作过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学渣渣渣渣渣

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值