在我的监督分类代码里,我一共分为了以下几个步骤:
1.制作训练样本数据;
2.遥感数据的筛选(时间、地点与云量);
3.遥感数据预处理(去云、镶嵌、裁剪);
4.构建光谱指数:NDVI、mNDWI,NDBI;
5.构建分类样本集 并分为训练样本与验证样本;
6.选择合适方法进行分类;
7.精度验证;
8.导出分类结果;
上面的步骤基本为·监督分类常用步骤,可以根据自己的需求修改,但大体没什么变化。
1.制作训练样本数据;
构造样本数据一般有两个方法,一个是本地上传矢量的训练数据;另外一个是在GEE里面自己选点制作。我主要介绍第二种方法。
构造样本数据,首先创建一个new layer,然后选择该要素,并在地图上标点。
选择好样本点之后,记得打开该要素,改变图层类型为featurecollection,并添加分类属性:landcover与值。比如耕地样本点的值就为1。
2.遥感数据的筛选(时间、地点与云量);
这一步根据自己的需求选取,我代码里面的roi就是研究区。如果你发现研究区影像云非常多,可以把过滤云标准调整高一点。
var startDate = ee.Date('2018-04-01');
var endDate = ee.Date('2018-9-30');
var col