Pytorch获取模型所有层

本文深入探讨了如何使用Python和PyTorch库获取深度学习模型的每一层及其模块,通过递归方式展开模型的层级结构,帮助读者理解模型内部组成。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

def getLayers(model):
    """
    get each layer's name and its module
    :param model:
    :return: each layer's name and its module
    """
    layers = []

    def unfoldLayer(model):
        """
        unfold each layer
        :param model: the given model or a single layer
        :param root: root name
        :return:
        """

        # get all layers of the model
        layer_list = list(model.named_children())
        for item in layer_list:
            module = item[1]
            sublayer = list(module.named_children())
            sublayer_num = len(sublayer)

            # if current layer contains sublayers, add current layer name on its sublayers
            if sublayer_num == 0:
                layers.append(module)
            # if current layer contains sublayers, unfold them
            elif isinstance(module, torch.nn.Module):
                unfoldLayer(module)

    unfoldLayer(model)
    return layers

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值