使用PyTorch检测和验证多GPU环境的Python脚本
在深度学习和机器学习中,GPU的计算能力对模型训练和推理的速度有着极大的影响。随着多GPU系统的普及,如何确保多GPU能被正确识别并使用,是一个非常关键的问题。本文将为大家介绍一段简洁的Python脚本,它可以帮助你验证PyTorch安装是否正常,并确保系统中的多张GPU都能被正确识别和使用。
脚本功能概述
这段代码的主要功能是:
- 检查PyTorch是否正确安装。
- 检查CUDA是否可用。
- 获取系统中可用的GPU数量,并分别输出每张GPU的详细信息。
- 测试每张GPU是否能正常工作,在GPU上创建张量。
脚本代码
import torch
def check_multiple_gpus():
# 检查PyTorch是否安装以及版本信息
print(f"PyTorch Version: {
torch.__version__}")
# 检查是否安装了CUDA
cuda_available = torch.cuda.is_available()
print(f"CUDA Available: {
cuda_available}")
if cuda_available:
# 获取可用GPU的数量
gpu_count =</