中科大-凸优化 笔记(lec10)-凸函数:一阶条件

本文是中科大凸优化课程的笔记,主要讨论了凸函数的扩展和一阶条件。介绍了示性函数作为凸函数的特性,并阐述了凸函数在一维和高维情况下的可微性与一阶条件的关系。内容涵盖了一阶条件的证明及其在凸函数性质中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

一、凸函数的扩展

f : R n → R f:\R^n\rightarrow\R f:RnR为凸函数, d o m    f = C ⊆ R n dom\;f=C\subseteq\R^n domf=CRn
f ~ = { f ( x )        x ∈ d o m    f + ∞          x ∉ d o m    f \tilde{f}=\left\{ \begin{array}{l} f(x)\;\;\;x\in dom\;f \\ \\+\infty\;\;\;\;x\notin dom\;f \end{array} \right. f~=f(x)xdomf+x/domf f ~ : R n → R d o m f ~ = R n \tilde{f}:\R^n\rightarrow\R\\ dom \tilde{f}=\R^n f~:RnRdomf~=Rn
在这里插入图片描述

示性函数是凸函数

凸集 C ⊆ R n , f C ( x ) = { 无 定 义      x ∉ C 0          x ∈ C C \subseteq\R^n,f_C(x)=\left\{ \begin{array}{l} 无定义\;\;x\notin C\\ \\0\;\;\;\;x\in C \end{array} \right. CRn,fC(x)=