全部笔记的汇总贴(视频也有传送门):中科大-凸优化
一、优化问题与凸优化问题
优化问题
m i n f 0 ( x ) s . t . f i ( x ) ≤ 0 , i = 1 , ⋯ , m , h j ( x ) = 0 , ⋯ , p min\;f_0(x)\\s.t.\;\;f_i(x)\le0,i=1,\cdots,m,h_j(x)=0,\cdots,p minf0(x)s.t.fi(x)≤0,i=1,⋯,m,hj(x)=0,⋯,p
凸优化问题
m i n f 0 ( x ) ( 凸 ) s . t . f i ( x ) ≤ 0. i = 1 , ⋯ , m ( 凸 ) a i T x = b i , i = 1 , ⋯ , p ( 仿 射 ) 仿 射 函 数 min\;\;f_0(x)\;\;\;\;\;\;\;(凸)\\s.t.\;\;f_i(x)\le0.i=1,\cdots,m\;\;(凸)\\\;\;\;\;a_i^Tx=b_i,i=1,\cdots,p(仿射)\\仿射函数 minf0(x)(凸)s.t.fi(x)≤0.i=1,⋯,m(凸)aiTx=bi,i=1,⋯,p(仿射)仿射函数
f i ( x ) ≤ 0 , α − s u b l e v e l s e t 凸 集 广 义 { 目 标 函 数 : 凸 约 束 : 凸 集 f_i(x)\le0,\alpha -sublevel\;set\;\;\;凸集\\广义\left\{ \begin{array}{l} 目标函数:凸\\ \\约束:凸集 \end{array} \right. fi(x)≤0,α−sublevelset凸集广义⎩⎨⎧目标函数:凸约束:凸集
例
m i n f 0 ( x ) = x 1 2 + x 2 2 s . t . f 1 ( x ) = x 1 1 + x 2 2 ≤ 0 h 1 ( x ) = ( x 1 + x 2 ) 2 = 0 } 狭 义 ( × ) 广 义 ( √ ) ⇔ m i n f 0 ( x ) = x 1 2 + x 2 2 s . t . f 1 ( x ) = x 1 ≤ 0 f 2 ( x ) = x 1 + x 2 = 0 \left. \begin{array}{r} min\;f_0(x)=x_1^2+x_2^2 \\ \\s.t.\;\;f_1(x)=\frac{x_1}{1+x_2^2}\le0\\\;\\h_1(x)=(x_1+x_2)^2=0 \end{array} \right\} 狭义(×)广义(√)\Leftrightarrow\left. \begin{array}{r} min\;f_0(x)=x_1^2+x_2^2 \\ \\s.t.\;\;f_1(x)={x_1}\le0\\\;\\f_2(x)=x_1+x_2=0 \end{array} \right. minf0(x)=x