中科大-凸优化 笔记(lec23)-优化问题

本文是中科大凸优化课程的笔记,主要探讨了优化问题与凸优化问题的概念,包括凸优化问题的定义、性质及例子。内容涵盖可微目标函数下的最优解条件,并通过多个实例深入解析凸优化问题的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

一、优化问题与凸优化问题

优化问题

m i n    f 0 ( x ) s . t .      f i ( x ) ≤ 0 , i = 1 , ⋯   , m , h j ( x ) = 0 , ⋯   , p min\;f_0(x)\\s.t.\;\;f_i(x)\le0,i=1,\cdots,m,h_j(x)=0,\cdots,p minf0(x)s.t.fi(x)0,i=1,,m,hj(x)=0,,p

凸优化问题

m i n      f 0 ( x )                ( 凸 ) s . t .      f i ( x ) ≤ 0. i = 1 , ⋯   , m      ( 凸 )          a i T x = b i , i = 1 , ⋯   , p ( 仿 射 ) 仿 射 函 数 min\;\;f_0(x)\;\;\;\;\;\;\;(凸)\\s.t.\;\;f_i(x)\le0.i=1,\cdots,m\;\;(凸)\\\;\;\;\;a_i^Tx=b_i,i=1,\cdots,p(仿射)\\仿射函数 minf0(x)s.t.fi(x)0.i=1,,maiTx=bi,i=1,,p仿仿

f i ( x ) ≤ 0 , α − s u b l e v e l    s e t        凸 集 广 义 { 目 标 函 数 : 凸 约 束 : 凸 集 f_i(x)\le0,\alpha -sublevel\;set\;\;\;凸集\\广义\left\{ \begin{array}{l} 目标函数:凸\\ \\约束:凸集 \end{array} \right. fi(x)0,αsublevelset广

m i n    f 0 ( x ) = x 1 2 + x 2 2 s . t .      f 1 ( x ) = x 1 1 + x 2 2 ≤ 0    h 1 ( x ) = ( x 1 + x 2 ) 2 = 0 } 狭 义 ( × ) 广 义 ( √ ) ⇔ m i n    f 0 ( x ) = x 1 2 + x 2 2 s . t .      f 1 ( x ) = x 1 ≤ 0    f 2 ( x ) = x 1 + x 2 = 0 \left. \begin{array}{r} min\;f_0(x)=x_1^2+x_2^2 \\ \\s.t.\;\;f_1(x)=\frac{x_1}{1+x_2^2}\le0\\\;\\h_1(x)=(x_1+x_2)^2=0 \end{array} \right\} 狭义(×)广义(√)\Leftrightarrow\left. \begin{array}{r} min\;f_0(x)=x_1^2+x_2^2 \\ \\s.t.\;\;f_1(x)={x_1}\le0\\\;\\f_2(x)=x_1+x_2=0 \end{array} \right. minf0(x)=x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值