Problem B 2016"百度之星" - 资格赛(Astar Round1)

本文探讨了一道关于字符串操作的问题,即如何通过合并相邻的1来形成不同的序列,并给出了使用动态规划解决该问题的方法和Java实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem B

 
 Accepts: 2037
 
 Submissions: 7572
 Time Limit: 2000/1000 MS (Java/Others)
 
 Memory Limit: 65536/65536 K (Java/Others)
Problem Description

度熊面前有一个全是由1构成的字符串,被称为全1序列。你可以合并任意相邻的两个1,从而形成一个新的序列。对于给定的一个全1序列,请计算根据以上方法,可以构成多少种不同的序列。

Input

这里包括多组测试数据,每组测试数据包含一个正整数NN,代表全1序列的长度。

1\leq N \leq 2001N200

Output

对于每组测试数据,输出一个整数,代表由题目中所给定的全1序列所能形成的新序列的数量。

Sample Input
1
3
5
Sample Output
1
3
8


    
Hint
如果序列是:(111)。可以构造出如下三个新序列:(111), (21), (12)。

看到这种题  只有两种想法  DP  递推。。

仔细观察菲波那切数列    至于怎么观察的  

如果当前有n个1 我们应该怎么得到f[n]呢   

我们可以认为有(n-1)个1后面再添加一个1得到  这个时候又分两种情况了  

1.不使用我们添加的这个1  总个数f[n-1]

2.使用我们添加的这个1  总个数f[n-2]  

如果说错了  请告诉我。。。

又因为N很大   (long long 好像存50多吧)   所以有两个选择  1 java大数  2.c模拟加法  

我用的1

AC代码:

import java.math.BigInteger;
import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
        // TODO Auto-generated method stub
        Scanner sc=new Scanner(System.in);
        BigInteger f []=new BigInteger[205];
        f[1]=new BigInteger("1");
        f[2]=new BigInteger("2");
        for(int i=3;i<=200;i++){
            f[i]=f[i-2].add(f[i-1]);
        }
        while(sc.hasNext()){
            int n=sc.nextInt();
            System.out.println(f[n]);
        }
    }

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值