1. 前言
在如今快速发展的AI技术领域,越来越多的企业正在将AI应用于各个场景。然而,尽管大模型(如GPT、DeepSpeek等)在多个任务上已取得显著进展,但是普通的大模型在面对特定行业或任务时,往往会出现一个问题——AI幻觉。所谓AI幻觉,是指模型生成的内容不符合实际需求,甚至包含错误或无关的信息,这对于一些行业来说,可能带来不可接受的风险,尤其是在医疗、法律、金融等领域。
对于这些行业的企业而言,精准、高效地输出行业特定内容是他们对AI的核心需求。企业希望AI能够处理行业术语、应对特殊情境,并且确保内容的准确性。然而,单纯依赖大模型进行推理,往往无法达到这样的标准,因为大模型的训练是基于通用数据集,这些数据集通常并不包含行业领域的深度知识。因此,企业通常需要一个更加定制化、精细化的模型,而这正是大模型微调技术能够提供的解决方案。
大模型微调技术通过对预训练的大模型进行进一步训练,能够根据特定领域的需求进行优化。通过提供具有代表性的领域数据,尤其是精心标注的行业特定数据,微调后的模型能够学习这些领域的专有知识,从而有效避免AI幻觉的发生,并且提供更加准确、有价值的输出。
本文将从零开始教你一步步入门AI大模型微调技术(基于DeepSpeek R1大模型) ,最终实现基于私有化部署的微调大模型AI会话系统。感兴趣的朋友可以继续往下看看。
2.大模型微调概念简述
大模型微调是指在已有的预训练大模型基础上,通过特定任务或领域数据进行进一步训练,使模型能够更精准地处理特定任务。与传统的训练方法不同,微调充分利用已有的大模型,减少对大量数据的依赖,同时通过对模型进行小范围的调整,使其适应新的任务。大模型微调技术在多个领域中得到了广泛应用,如文本生成、分类任务、问答系统等。
微调的核心目标是使大模型根据特定任务需求进行
01-11
3万+

02-06
2628

02-11
1914

02-13
1575
